Year
Month
(Peer-Reviewed) Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization
Jitao Li 李继涛 ¹, Guocui Wang 汪国崔 ² ³, Zhen Yue 岳震 ¹, Jingyu Liu 刘婧宇 ³, Jie Li 李杰 ¹, Chenglong Zheng 郑程龙 ¹, Yating Zhang 张雅婷 ¹, Yan Zhang 张岩 ³, Jianquan Yao 姚建铨 ¹
¹ Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
中国 天津 天津大学光电信息技术教育部重点实验室 天津大学精密仪器与光电子工程学院
² Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院 北京市混合现实与新型显示工程技术研究中心
³ Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
中国 北京 首都师范大学物理系 超材料与器件北京市重点实验室 太赫兹光电子学教育部重点实验室 北京成像技术高精尖创新中心
Opto-Electronic Advances, 2022-01-25
Abstract

If a metalens integrates the circular polarization (CP) conversion function, the focusing lens together with circular-polarizing lens (CPL) in traditional cameras may be replaced by a metalens. However, in terahertz (THz) band, the reported metalenses still do not obtain the perfect and strict single-handed CP, because they were constructed via Pancharatnam-Berry phase so that CP conversion contained both left-handed CP (LCP) and right-handed CP (RCP) components.

In this paper, a silicon based THz metalens is constructed using dynamic phase to obtain single-handed CP conversion. Also, we can rotate the whole metalens at a certain angle to control the conversion of multi-polarization states, which can simply manipulate the focusing for incident linear polarization (LP) THz wave in three polarization conversion states, including LP without conversion, LCP and RCP.

Moreover, the polarization conversion behavior is reversible, that is, the THz metalens can convert not only the LP into arbitrary single-handed CP, but also the LCP and RCP into two perpendicular LP, respectively. The metalens is expected to be used in advanced THz camera, as a great candidate for traditional CPL and focusing lens group, and also shows potential application in polarization imaging with discriminating LCP and RCP.
Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization_1
Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization_2
Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization_3
Dynamic phase assembled terahertz metalens for reversible conversion between linear polarization and arbitrary circular polarization_4
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07



  • Photonic lenses with whispering gallery waves at Janus particles                                Non-cooperative target pose estimation based on improved iterative closest point algorithm
    About
    |
    Contact
    |
    Copyright © PubCard