(Peer-Reviewed) Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition
Yong Xie 谢勇 ¹, Zhixin Xia 夏志新 ¹, Jixin Hou 侯纪新 ¹, Jiachao Xu 徐加超 ², Peng Chen 陈鹏 ¹, Le Wan 万乐 ²
¹ Shagang School of Iron and Steel, Soochow University, Suzhou, 215131, China
中国 苏州 苏州大学沙钢钢铁学院
² School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215131, China
中国 苏州 苏州大学机电工程学院
Abstract
To shed light into the application potential of high-entropy alloys as "interlayer" materials for Al-steel solid-state joining, we investigated the nature of the CoCrFeMnNi/Fe and CoCrFeMnNi/Al solid/solid interfaces, focusing on the bonding behavior and phase components. Good metallurgical bonding without the formation of hard and brittle IMC can be achieved for CoCrFeMnNi/Fe solid/solid interface.
In contrast to the formation of Al₅Fe₂ phase at the Fe/Al interface, Al₁₃Fe₄-type IMC, in which the Fe site is co-occupied equally by Co, Cr, Fe, Mn and Ni, dominates the CoCrFeMnNi/Al interface. Although the formation of IMC at the CoCrFeMnNi/Al interface is not avoidable, the thickness and hardness of the Al₁₃(CoCrFeMnNi)₄ phase formed at the CoCrFeMnNi/Al interface are significantly lower than the Al₅Fe₂ phase formed at the Fe/Al interface. The activation energies for the interdiffusion of Fe/Al and CoCrFeMnNi/Al static diffusion couple are 341.6 kJ/mol and 329.5 kJ/mol, respectively.
Despite this similarity, under identical static annealing condition, the interdiffusion coefficient of the CoCrFeMnNi/Al diffusion couple is significantly lower than that of the Fe/Al diffusion couple. This is thus mainly a result of the reduced atomic mobility/diffusivity caused by the compositional complexity in CoCrFeMnNi high-entropy alloy.
Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
Opto-Electronic Advances
2025-11-25
A review on optical torques: from engineered light fields to objects
Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
Opto-Electronic Science
2025-11-25