Year
Month
(Peer-Reviewed) Efficient stochastic parallel gradient descent training for on-chip optical processor
Yuanjian Wan 万远剑 ¹ ², Xudong Liu 刘旭东 ¹ ², Guangze Wu 吴广泽 ¹ ², Min Yang 杨敏 ¹ ², Guofeng Yan 颜国锋 ¹ ², Yu Zhang 张宇 ¹ ², Jian Wang 王健 ¹ ²
¹ Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家研究中心
² Optics Valley Laboratory, Wuhan 430074, China
中国 武汉 湖北光谷实验室
Opto-Electronic Advances, 2024-04-25
Abstract

In recent years, space-division multiplexing (SDM) technology, which involves transmitting data information on multiple parallel channels for efficient capacity scaling, has been widely used in fiber and free-space optical communication systems. To enable flexible data management and cope with the mixing between different channels, the integrated reconfigurable optical processor is used for optical switching and mitigating the channel crosstalk.

However, efficient online training becomes intricate and challenging, particularly when dealing with a significant number of channels. Here we use the stochastic parallel gradient descent (SPGD) algorithm to configure the integrated optical processor, which has less computation than the traditional gradient descent (GD) algorithm. We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.

Moreover, we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems. In comparison with the traditional GD algorithm, it is found that the SPGD algorithm features better performance especially when the scale of matrix is large, which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
Efficient stochastic parallel gradient descent training for on-chip optical processor_1
Efficient stochastic parallel gradient descent training for on-chip optical processor_2
Efficient stochastic parallel gradient descent training for on-chip optical processor_3
Efficient stochastic parallel gradient descent training for on-chip optical processor_4
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16



  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters                                High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
    About
    |
    Contact
    |
    Copyright © PubCard