Year
Month
(Peer-Reviewed) Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
Yinan Zhang 张轶楠 ¹, Yinggang Chen 陈迎港 ¹ ², Tong Wang 王彤 ¹, Qian Zhu 朱倩 ¹, Min Gu 顾敏 ¹
¹ Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
中国 上海 上海理工大学 光子芯片研究院
² Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
中国 上海 上海理工大学 光电信息与计算机工程学院 人工智能纳米光子学中心
Opto-Electronic Advances, 2024-03-12
Abstract

Real-world passive radiative cooling requires highly emissive, selective, and omnidirectional thermal emitters to maintain the radiative cooler at a certain temperature below the ambient temperature while maximizing the net cooling power. Despite various selective thermal emitters have been demonstrated, it is still challenging to achieve these conditions simultaneously because of the extreme difficulty in controlling thermal emission of photonic structures in multidimension.

Here we demonstrated hybrid polar dielectric metasurface thermal emitters with machine learning inverse design, enabling a high emissivity of ~0.92 within the atmospheric transparency window 8–13 μm, a large spectral selectivity of ~1.8 and a wide emission angle up to 80 degrees, simultaneously. This selective and omnidirectional thermal emitter has led to a new record of temperature reduction as large as ~15.4 °C under strong solar irradiation of ~800 W/m2, significantly surpassing the state-of-the-art results.

The designed structures also show great potential in tackling the urban heat island effect, with modelling results suggesting a large energy saving and deployment area reduction. This research will make significant impact on passive radiative cooling, thermal energy photonics and tackling global climate change.
Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters_1
Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters_2
Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters_3
Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters_4
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17



  • High-Q resonant Terahertz metasurfaces                                Efficient stochastic parallel gradient descent training for on-chip optical processor
    About
    |
    Contact
    |
    Copyright © PubCard