Year
Month
(Peer-Reviewed) Implementation of Abstract MAC Layer Under Jamming
Yifei Zou 邹逸飞 ¹, Minghui Xu 徐明辉 ¹, Dongxiao Yu 于东晓 ¹, Liandong Chen 陈连栋 ², Shaoyong Guo 郭少勇 ³, Xiaoshuang Xing 邢晓双 ⁴
¹ School of Computer Science and Technology, Shandong University, Qingdao 266237, China
中国 青岛 山东大学计算机科学与技术学院
² Information and Telecommunication Branch, State Grid Hebei Electric Power Company Ltd., Shijiazhuang 050022, China
中国 石家庄 国网河北省电力有限公司信息通信分公司
³ State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
中国 北京 北京邮电大学 网络与交换技术国家重点实验室
⁴ School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China
中国 常熟 常熟理工学院 计算机科学与工程学院
Abstract

In the past decades, with the widespread implementation of wireless networks, such as the Internet of Things, an enormous demand for designing relative algorithms for various realistic scenarios has arisen. However, with the widening of scales and deepening of network layers, it has become increasingly challenging to design such algorithms when the issues of message dissemination at high levels and the contention management at the physical layer are considered.

Accordingly, the abstract medium access control (absMAC) layer, which was proposed in 2009, is designed to solve this problem. Specifically, the absMAC layer consists of two basic operations for network agents: the acknowledgement operation to broadcast messages to all neighbors and the progress operation to receive messages from neighbors. The absMAC layer divides the wireless algorithm design into two independent and manageable components, i.e., to implement the absMAC layer over a physical network and to solve higher-level problems based on the acknowledgement and progress operations provided by the absMAC layer, which makes the algorithm design easier and simpler.

In this study, we consider the implementation of the absMAC layer under jamming. An efficient algorithm is proposed to implement the absMAC layer, attached with rigorous theoretical analyses and extensive simulation results. Based on the implemented absMAC layer, many high-level algorithms in non-jamming cases can be executed in a jamming network.
Implementation of Abstract MAC Layer Under Jamming_1
Implementation of Abstract MAC Layer Under Jamming_2
Implementation of Abstract MAC Layer Under Jamming_3
Implementation of Abstract MAC Layer Under Jamming_4
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03



  • Probe Machine Based Computing Model for Maximum Clique Problem                                Twin evolution in cast Mg-Gd-Y alloys and its dependence on aging heat treatment
    About
    |
    Contact
    |
    Copyright © PubCard