Year
Month
(Peer-Reviewed) Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization
Chaudry Sajed Saraj ¹ ², Subhash C. Singh ¹ ³, Gopal Verma ¹, Rahul A Rajan ¹ ², Wei Li 李炜 ¹ ², Chunlei Guo 郭春雷 ³
¹ GPL Photonics Lab, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
中国 长春 中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室 微纳光子学与材料国际实验室
² University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
中国 北京 中国科学院大学
³ The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
Opto-Electronic Advances, 2022-06-02
Abstract

Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels. These reactions, however, suffer from sluggish kinetics due to a low local concentration of radicals around the electrocatalyst. A large applied electrode potential can enhance the fuel generation efficiency via enhancing the radical concentration around the electrocatalyst sites, but this comes at the cost of electricity.

Here, we report about a ~45% saving in energy to achieve an electrochemical hydrogen generation rate of 3×1016 molecules cm–2s–1 (current density: 10 mA/cm2) through localized electric field-induced enhancement in the reagent concentration (LEFIRC) at laser-induced periodic surface structured (LIPSS) electrodes. The finite element model is used to simulate the spatial distribution of the electric field to understand the effects of LIPSS geometric parameters in field localization. When the LIPSS patterned electrodes are used as substrates to support Pt/C and RuO2 electrocatalysts, the η10 overpotentials for HER and OER are decreased by 40.4 and 25%, respectively.

Moreover, the capability of the LIPSS-patterned electrodes to operate at significantly reduced energy is also demonstrated in a range of electrolytes, including alkaline, acidic, neutral, and seawater. Importantly, when two LIPSS patterned electrodes were assembled as the anode and cathode into a cell, it requires 330 mVs of lower electric potential with enhanced stability over a similar cell made of pristine electrodes to drive a current density of 10 mA/cm2.

This work demonstrates a physical and versatile approach of electrode surface patterning to boost electrocatalytic fuel generation performance and can be applied to any metal and semiconductor catalysts for a range of electrochemical reactions.
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization_1
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization_2
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization_3
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization_4
  • Natural history and cycle threshold values analysis of COVID-19 in Xiamen City, China
  • Bin Deng, Weikang Liu, Zhinan Guo, Li Luo, Tianlong Yang, Jiefeng Huang, Buasiyamu Abudunaibi, Yidun Zhang, Xue Ouyang, Demeng Wang, Chenghao Su, Tianmu Chen
  • Infectious Disease Modelling
  • 2022-08-09
  • Terahertz generation from laser-induced plasma
  • Wenfeng Sun, Xinke Wang, Yan Zhang
  • Opto-Electronic Science
  • 2022-08-04
  • Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives
  • Ahmed Elbanna, Ksenia Chaykun, Yulia Lekina, Yuanda Liu, Benny Febriansyah, Shuzhou Li, Jisheng Pan, Ze Xiang Shen, Jinghua Teng
  • Opto-Electronic Science
  • 2022-08-04
  • Microchip imaging cytometer: making healthcare available, accessible, and affordable
  • Xilong Yuan, Todd Darcie, Ziyin Wei, J Stewart Aitchison
  • Opto-Electronic Advances
  • 2022-08-03
  • Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth
  • Siqi Yan, Yan Zuo, Sanshui Xiao, Leif Katsuo Oxenløwe, Yunhong Ding
  • Opto-Electronic Advances
  • 2022-07-29
  • Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems
  • Ja Hoon Koo, Huiwon Yun, Woongchan Lee, Sung-Hyuk Sunwoo, Hyung Joon Shim, Dae-Hyeong Kim
  • Opto-Electronic Advances
  • 2022-07-28
  • A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion
  • Dawei Wang, Huili Han, Bo Sa, Kelin Li, Jujie Yan, Jiazhen Zhang, Jianguang Liu, Zhengdi He, Ning Wang, Ming Yan
  • Opto-Electronic Advances
  • 2022-07-27
  • The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility
  • Shuolin Wang, Yidong Shan, Dahuai Zheng, Shiguo Liu, Fang Bo, Hongde Liu, Yongfa Kong, Jingjun Xu
  • Opto-Electronic Advances
  • 2022-07-27
  • 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate
  • Zhiqiang Yu, Nan Zhang, Jianxin Wang, Zijie Dai, Cheng Gong, Lie Lin, Lanjun Guo, Weiwei Liu
  • Opto-Electronic Advances
  • 2022-07-27
  • Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes
  • Bingying Zhou, Xun Shi, Xiaoli Tang, Quanyi Zhao, Le Wang, Fang Yao, Yongfeng Hou, Xianqiang Wang, Wei Feng, Liqing Wang, Xiaogang Sun, Li Wang, Shengshou Hu
  • Signal Transduction and Targeted Therapy
  • 2022-07-27
  • Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators
  • Long Zhang, Ming Zhang, Tangnan Chen, Dajian Liu, Shihan Hong, Daoxin Dai
  • Opto-Electronic Advances
  • 2022-07-25
  • Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers
  • Wen Yu, Ni Yao, Jing Pan, Wei Fang, Xiong Li, Limin Tong, Lei Zhang
  • Opto-Electronic Advances
  • 2022-07-15



  • 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution                                High performance integrated photonic circuit based on inverse design method
    About
    |
    Contact
    |
    Copyright © PubCard