Year
Month
(Peer-Reviewed) High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications
Fanlu Zhang 张钒璐 ¹, Zhicheng Su 苏志诚 ¹ ², Zhe Li 李哲 ¹, Yi Zhu 朱毅 ¹, Nikita Gagrani ¹, Ziyuan Li 李子园 ¹, Mark Lockrey ³, Li Li 李丽 ⁴, Igor Aharonovich ⁵, Yuerui Lu 卢曰瑞 ⁶, Hark Hoe Tan ¹, Chennupati Jagadish ¹, Lan Fu 傅岚 ¹
¹ Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
² School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
中国 南京 东南大学电子科学与工程学院
³ Microstructural Analysis Unit, University of Technology Sydney, Sydney NSW 2007, Australia
⁴ Australian National Fabrication Facility ACT Node, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
⁵ ARC Centre of Excellence for Transformative Meta-Optical Systems, Faculty of Science, University of Technology Sydney, Sydney NSW 2007, Australia
⁶ School of Engineering, College of Engineering and Computer Science, The Australia National University, Canberra, Canberra ACT 2601, Australia
Abstract

Miniaturized light sources at telecommunication wavelengths are essential components for on-chip optical communication systems. Here, we report the growth and fabrication of highly uniform p-i-n core-shell InGaAs/InP single quantum well (QW) nanowire array light emitting diodes (LEDs) with multi-wavelength and high-speed operations.

Two-dimensional cathodoluminescence mapping reveals that axial and radial QWs in the nanowire structure contribute to strong emission at the wavelength of ~1.35 and ~1.55 μm, respectively, ideal for low-loss optical communications. As a result of simultaneous contributions from both axial and radial QWs, broadband electroluminescence emission with a linewidth of 286 nm is achieved with a peak power of ~17 μW.

A large spectral blueshift is observed with the increase of applied bias, which is ascribed to the band-filling effect based on device simulation, and enables voltage tunable multi-wavelength operation at the telecommunication wavelength range. Multi-wavelength operation is also achieved by fabricating nanowire array LEDs with different pitch sizes on the same substrate, leading to QW formation with different emission wavelengths.

Furthermore, high-speed GHz-level modulation and small pixel size LED are demonstrated, showing the promise for ultrafast operation and ultracompact integration. The voltage and pitch size controlled multi-wavelength high-speed nanowire array LED presents a compact and efficient scheme for developing high-performance nanoscale light sources for future optical communication applications.
High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications_1
High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications_2
High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications_3
High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications_4
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07



  • 31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure                                Encoding physics to learn reaction–diffusion processes
    About
    |
    Contact
    |
    Copyright © PubCard