Year
Month
(Peer-Reviewed) 31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure
Zengyi Xu 徐增熠 ¹ ⁴, Wenqing Niu 牛文清 ¹, Yu Liu 柳裕 ², Xianhao Lin 林显浩 ¹, Jifan Cai 蔡济帆 ¹, Jianyang Shi 施剑阳 ¹ ³, Xiaolan Wang 王小兰 ², Guangxu Wang 王光绪 ², Jianli Zhang 张建立 ², Fengyi Jiang 江风益 ², Zhixue He 贺志学 ⁴, Shaohua Yu 余少华 ⁴, Chao Shen 沈超 ¹, Junwen Zhang 张俊文 ¹, Nan Chi 迟楠 ¹ ³
¹ Key Laboratory for the Information Science of Electromagnetic Waves (MoE), Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
中国 上海 复旦大学电磁波信息科学教育部重点实验室
² National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330096, China
中国 南昌 南昌大学国家硅基LED工程技术研究中心
³ Shanghai Engineering Research Center of Low-Earth-Orbit Satellite Communication and Applications, and Shanghai Collaborative Innovation Center of Low-Earth-Orbit Satellite Communication Technology, Shanghai 200433, China
中国 上海 上海低轨卫星通信与应用工程技术研究中心 上海低轨卫星通信技术协同创新中心
⁴ Peng Cheng Laboratory, Shenzhen 518055, China
中国 深圳 鹏城实验室
Abstract

Although the 5G wireless network has made significant advances, it is not enough to accommodate the rapidly rising requirement for broader bandwidth in post-5G and 6G eras. As a result, emerging technologies in higher frequencies including visible light communication (VLC), are becoming a hot topic. In particular, LED-based VLC is foreseen as a key enabler for achieving data rates at the Tb/s level in indoor scenarios using multi-color LED arrays with wavelength division multiplexing (WDM) technology.

This paper proposes an optimized multi-color LED array chip for high-speed VLC systems. Its long-wavelength GaN-based LED units are remarkably enhanced by V-pit structure in their efficiency, especially in the “yellow gap” region, and it achieves significant improvement in data rate compared with earlier research. This work investigates the V-pit structure and tries to provide insight by introducing a new equivalent circuit model, which provides an explanation of the simulation and experiment results.

In the final test using a laboratory communication system, the data rates of eight channels from short to long wavelength are 3.91 Gb/s, 3.77 Gb/s, 3.67 Gb/s, 4.40 Gb/s, 3.78 Gb/s, 3.18 Gb/s, 4.31 Gb/s, and 4.35 Gb/s (31.38 Gb/s in total), with advanced digital signal processing (DSP) techniques including digital equalization technique and bit-power loading discrete multitone (DMT) modulation format.
31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure_1
31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure_2
31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure_3
31.38 Gb/s GaN-based LED array visible light communication system enhanced with V-pit and sidewall quantum well structure_4
  • Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity
  • Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao
  • Opto-Electronic Advances
  • 2023-07-20
  • Encoding physics to learn reaction–diffusion processes
  • Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, Yang Liu
  • Nature Machine Intelligence
  • 2023-07-17
  • Accurate medium-range global weather forecasting with 3D neural networks
  • Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, Qi Tian
  • Nature
  • 2023-07-05
  • Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core
  • Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Tiegen Liu
  • Opto-Electronic Advances
  • 2023-06-25
  • In-flow holographic tomography boosts lipid droplet quantification
  • Michael John Fanous, Aydogan Ozcan
  • Opto-Electronic Advances
  • 2023-06-25
  • The second fusion of laser and aerospace—an inspiration for high energy lasers
  • Xiaojun Xu, Rui Wang, Zining Yang
  • Opto-Electronic Advances
  • 2023-06-25
  • Hot electron electrochemistry at silver activated by femtosecond laser pulses
  • Oskar Armbruster, Hannes Pöhl, Wolfgang Kautek
  • Opto-Electronic Advances
  • 2023-06-25
  • Highly sensitive microfiber ultrasound sensor for photoacoustic imaging
  • Perry Ping Shum, Gerd Keiser, Georges Humbert, Dora Juan Juan Hu, A. Ping Zhang, Lei Su
  • Opto-Electronic Advances
  • 2023-06-25
  • Integral imaging-based tabletop light field 3D display with large viewing angle
  • Yan Xing, Xing-Yu Lin, Lin-Bo Zhang, Yun-Peng Xia, Han-Le Zhang, Hong-Yu Cui, Shuang Li, Tong-Yu Wang, Hui Ren, Di Wang, Huan Deng, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2023-06-25
  • Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption
  • Zhenyuan Lin, Kuan Liu, Tun Cao, Minghui Hong
  • Opto-Electronic Advances
  • 2023-06-25
  • 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography
  • Kexuan Liu, Jiachen Wu, Zehao He, Liangcai Cao
  • Opto-Electronic Advances
  • 2023-05-30



  • Third-harmonic generation and imaging with resonant Si membrane metasurface                                High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications
    About
    |
    Contact
    |
    Copyright © PubCard