Year
Month
(Peer-Reviewed) Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)
LI Ganggang 李刚刚 ¹ ⁴, LU Ye 芦晔 ², HE Pei 何培 ², ZHANG Shiyue ¹, CHENG Yating ¹, ZHANG Shaodan 张少丹 ³, PEI Lin 裴林 ¹ ²
¹ School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang 050051, China
中国 石家庄 河北中医学院 基础医学院
² Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang 050011, China
中国 石家庄 河北省中医药科学院 河北省浊毒证重点实验室
³ Department of pediatrics, Second Hospital of Hebei Medical University, Shijiazhuang 050073, China
中国 石家庄 河北医科大学第二医院儿科
⁴ Department of Traditional Chinese Medicine, Anyang Vocational and Technical College, Anyang 455000, China
中国 安阳 安阳职业技术学院中医系
Objective

To decipher the antidepressant targets and mechanisms of Huangqin (Radix Scutellariae Baicalensis) (RSB) by a novel computational system based on prediction and experimental verification.

Methods

The putative targets of RSB against depression were identified from Traditional Chinese
Medicine Systems Pharmacology (TCMSP) and DrugBank. Next, protein-protein interaction network of the anti-depression targets of RSB were identified, and differentially expressed genes (DEGs) of depression were mined from the NCBI database. Then, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology were used to analysis the common targets. Finally, the selected pathways and functions were verified by experimentation.

Results

Thirty active compounds in RSB were predicted with high confidence by TCMSP and DrugBank, and seventy-one DEGs were identified in the GEO database. Besides, eight core target proteins were screened out by descending order of degree value, including ACHE, IL6, SLC6A4, FOS, SLC6A3, MAOB, DPP4, and JUN. These target genes were further found to be associated with pathways involved in neuronal apoptosis, such as pathways in cancer, Toll-like receptor signaling pathway, and TNF signaling. The cell proliferation assay and wound-healing assay results showed that RSB does not affect PC12 cell proliferation and chemotaxis. Unexpectedly, RSB protected PC12 cells from oxidative stress induced by H2O2 via inhibiting autophagy and apoptosis. We revealed significant changes in mice treated with 400 mg/kg RSB compared with the lipopolysaccharide mice. The possible mechanism for the antidepressive action of RSB is by reducing the expression of LC3-B in CA1 neurons.

Conclusions

Our research partially expounds the mechanism of the antidepressant effect of RSB
by the combination of network pharmacology prediction and experimental verification. Furthermore, it is also conducive to the application of Traditional Chinese Medicine within modern medicine.
Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)_1
Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)_2
Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)_3
Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)_4
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07



  • Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy                                RhoGEF Trio Regulates Radial Migration of Projection Neurons via Its Distinct Domains
    About
    |
    Contact
    |
    Copyright © PubCard