Year
Month
(Peer-Reviewed) Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)
LI Ganggang 李刚刚 ¹ ⁴, LU Ye 芦晔 ², HE Pei 何培 ², ZHANG Shiyue ¹, CHENG Yating ¹, ZHANG Shaodan 张少丹 ³, PEI Lin 裴林 ¹ ²
¹ School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang 050051, China
中国 石家庄 河北中医学院 基础医学院
² Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang 050011, China
中国 石家庄 河北省中医药科学院 河北省浊毒证重点实验室
³ Department of pediatrics, Second Hospital of Hebei Medical University, Shijiazhuang 050073, China
中国 石家庄 河北医科大学第二医院儿科
⁴ Department of Traditional Chinese Medicine, Anyang Vocational and Technical College, Anyang 455000, China
中国 安阳 安阳职业技术学院中医系
Objective

To decipher the antidepressant targets and mechanisms of Huangqin (Radix Scutellariae Baicalensis) (RSB) by a novel computational system based on prediction and experimental verification.

Methods

The putative targets of RSB against depression were identified from Traditional Chinese
Medicine Systems Pharmacology (TCMSP) and DrugBank. Next, protein-protein interaction network of the anti-depression targets of RSB were identified, and differentially expressed genes (DEGs) of depression were mined from the NCBI database. Then, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology were used to analysis the common targets. Finally, the selected pathways and functions were verified by experimentation.

Results

Thirty active compounds in RSB were predicted with high confidence by TCMSP and DrugBank, and seventy-one DEGs were identified in the GEO database. Besides, eight core target proteins were screened out by descending order of degree value, including ACHE, IL6, SLC6A4, FOS, SLC6A3, MAOB, DPP4, and JUN. These target genes were further found to be associated with pathways involved in neuronal apoptosis, such as pathways in cancer, Toll-like receptor signaling pathway, and TNF signaling. The cell proliferation assay and wound-healing assay results showed that RSB does not affect PC12 cell proliferation and chemotaxis. Unexpectedly, RSB protected PC12 cells from oxidative stress induced by H2O2 via inhibiting autophagy and apoptosis. We revealed significant changes in mice treated with 400 mg/kg RSB compared with the lipopolysaccharide mice. The possible mechanism for the antidepressive action of RSB is by reducing the expression of LC3-B in CA1 neurons.

Conclusions

Our research partially expounds the mechanism of the antidepressant effect of RSB
by the combination of network pharmacology prediction and experimental verification. Furthermore, it is also conducive to the application of Traditional Chinese Medicine within modern medicine.
Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)_1
Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)_2
Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)_3
Target prediction and activity verification for the antidepressant action of Huangqin (Radix Scutellariae Baicalensis)_4
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28



  • Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy                                RhoGEF Trio Regulates Radial Migration of Projection Neurons via Its Distinct Domains
    About
    |
    Contact
    |
    Copyright © PubCard