Year
Month
(Peer-Reviewed) Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
Xin Xu 徐欣 ¹ ², Qin Luo 罗勤 ¹ ², Jixiang Wang 王吉祥 ¹ ², Yahui Song 宋雅慧 ¹ ², Hong Ye 叶虹 ², Xin Zhang 张欣 ², Yi He 何益 ², Minxuan Sun 孙敏轩 ¹ ², Ruobing Zhang 张若冰 ¹ ², Guohua Shi 史国华 ¹ ²
¹ School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
中国 合肥 中国科学技术大学 生命科学与医学部 生物医学工程学院(苏州)
² Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
中国 苏州 中国科学院 苏州生物医学工程技术研究所 江苏省医用光学重点实验室
Opto-Electronic Advances, 2024-06-11
Abstract

Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view, typically around 1 mm. This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample, such as different brain areas. In addition, conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.

Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm, a numerical aperture of 0.5, and a working wavelength range from 400 to 1000 nm. We achieved a resolution of 0.74 μm in fluorescent beads imaging. The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system, a confocal laser scanning system, and a two-photon imaging system.

This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution_1
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution_2
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution_3
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04
  • Charge collection narrowing mechanism in electronic-grade-diamond photodetectors
  • Xiaoping Ouyang
  • Opto-Electronic Advances
  • 2024-05-30



  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation                                Charge collection narrowing mechanism in electronic-grade-diamond photodetectors
    About
    |
    Contact
    |
    Copyright © PubCard