Year
Month
(Peer-Reviewed) Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
Xin Xu 徐欣 ¹ ², Qin Luo 罗勤 ¹ ², Jixiang Wang 王吉祥 ¹ ², Yahui Song 宋雅慧 ¹ ², Hong Ye 叶虹 ², Xin Zhang 张欣 ², Yi He 何益 ², Minxuan Sun 孙敏轩 ¹ ², Ruobing Zhang 张若冰 ¹ ², Guohua Shi 史国华 ¹ ²
¹ School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
中国 合肥 中国科学技术大学 生命科学与医学部 生物医学工程学院(苏州)
² Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
中国 苏州 中国科学院 苏州生物医学工程技术研究所 江苏省医用光学重点实验室
Opto-Electronic Advances, 2024-06-11
Abstract

Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view, typically around 1 mm. This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample, such as different brain areas. In addition, conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imaging in vivo.

Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm, a numerical aperture of 0.5, and a working wavelength range from 400 to 1000 nm. We achieved a resolution of 0.74 μm in fluorescent beads imaging. The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system, a confocal laser scanning system, and a two-photon imaging system.

This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution_1
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution_2
Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution_3
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03



  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation                                Charge collection narrowing mechanism in electronic-grade-diamond photodetectors
    About
    |
    Contact
    |
    Copyright © PubCard