(Peer-Reviewed) A nonchlorinated solvent-processed polymer semiconductor for high-performance ambipolar transistors
Jie Yang 杨杰 ¹ ², Yaqian Jiang 蒋雅倩 ¹, Zhiyuan Zhao 赵志远 ¹, Xueli Yang 杨学礼 ¹, Zheye Zhang 张哲野 ², Jinyang Chen 陈金佯 ¹, Junyu Li ¹, Wei Shi 施薇 ¹, Shuai Wang 王帅 ², Yunlong Guo 郭云龙 ¹, Yunqi Liu 刘云圻 ¹
¹ Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China 中国科学院 化学研究所 北京分子科学国家实验室 有机固体院重点实验室
² School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 华中科技大学 化学与化工学院
National Science Review
, 2021-08-14
Abstract
Ambipolar polymer semiconductors are potentially serviceable for logic circuits, light-emitting field-effect transistors (LFETs), and polymer solar cells (PSCs). Although several high-performance ambipolar polymers have been developed, their optoelectronic devices are generally processed from hazardous chlorinated solvents. To achieve the commercial applications of organic FETs (OFETs), the polymers should be processed from nonchlorinated solvents, instead of chlorinated solvents.
However, most of conjugated polymers show poor solubility in nonchlorinated solvents. It is of great importance to develop ambipolar polymers that can be processed from nonchlorinated solvents. Here, we develop a nonchlorinated solvent processed polymer named poly[7-fluoro-N, N′-di(4-decyltetradecyl)-7′-azaisoindigo-6′,6″-(thieno[3,2-b]thiophene-2,5-diyl)-7‴-fluoro-N″, N‴-di(4-decyltetradecyl)-7″-azaisoindigo-6,6‴-([2,2'-bithiophene]-5,5'-diyl)] (PITTI-BT) by designing a monomer with a large molar mass.
The polymer displays good solubility in p-xylene (PX). Well-aligned films of PITTI-BT are achieved by an off-center spin-coating (SC) method. Based on the high-quality films, the OFETs fabricated from PX solution achieve record ambipolar performance with hole and electron mobilities of 3.06 and 2.81 cm2 V−1 s−1, respectively. The combination of nonchlorinated solvents and good alignment process offers an effective and eco-friendly approach to obtain high-performance ambipolar transistors.
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
Opto-Electronic Science
2025-04-25