Year
Month

(Peer-Reviewed) Stretchable and self-healable hydrogel artificial skin
Bin Xue 薛斌 ¹, Hui Sheng 盛卉 ¹, Yongqiang Li ¹, Lan Li ², Weishuai Di 邸维帅 ¹, Zhengyu Xu 徐铮宇 ¹, Linjie Ma 马林杰 ¹, Xin Wang 王鑫 ¹, Haoting Jiang 姜鹤亭 ¹, Meng Qin 秦猛 ¹, Zhibo Yan ¹, Qing Jiang 蒋青 ², Jun-Ming Liu ¹, Wei Wang 王炜 ¹ ³, Yi Cao 曹毅 ¹ ³ ⁴
¹ National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China; 南京大学 物理学院 固体微结构物理国家重点实验室
² State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Nanjing 210008, China; 南京大学医学院附属鼓楼医院 运动医学与成人重建外科 医药生物技术国家重点实验室
³ Institute for Brain Sciences, Nanjing University, Nanjing 210093, China; 南京大学 脑科学研究院
⁴ Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China 南京大学 化学和生物医药创新研究院
National Science Review , 2021-08-14
Abstract

Hydrogels have emerged as promising materials for the construction of skin-like mechanical sensors. The common design of hydrogel-based artificial skin requires a dielectric sandwiched between two hydrogel layers for capacitive sensing. However, such a planar configuration limits the sensitivity, stretchability and self-healing properties.

Here, we report the design of single-layer composite hydrogels with bulk capacitive junctions as mechanical sensors. We engineer dielectric peptide-coated graphene (PCG) to serve as homogenously dispersed electric double layers in hydrogels. Any mechanical motions that alter the microscopic distributions of PCG in the hydrogels can significantly change the overall capacitance. We use peptide self-assembly to render strong yet dynamic interfacial interactions between the hydrogel network and graphene. The resulting hydrogels can be stretched up to 77 times their original length and self-heal in a few minutes. The devices can effectively sense strain and pressure in both air and aqueous environments, providing tremendous opportunities for next-generation iontronics.
Stretchable and self-healable hydrogel artificial skin_1
Stretchable and self-healable hydrogel artificial skin_2
Stretchable and self-healable hydrogel artificial skin_3
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31



  • A nonchlorinated solvent-processed polymer semiconductor for high-performance ambipolar transistors        Post-ingestion conversion of dietary indoles into anticancer agents
    About
    |
    Contact
    |
    Copyright © PubCard