(Peer-Reviewed) Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
Yifan Qi ¹, Gongcheng Yue ², Ting Hao ³, Yang Li ¹
¹ State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
中国 广州 中山大学电子与信息工程学院 光电材料与技术国家重点实验室
² State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
中国 北京 清华大学精密仪器系 精密测试技术及仪器全国重点实验室
³ Advanced Fiber Resources (Zhuhai), Ltd., Zhuhai 519080, China
中国 珠海 珠海光库科技股份有限公司
Opto-Electronic Advances
, 2025-09-25
Abstract
Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices. However, the nanofabrication of these devices requires high-quality etching of these thin films, necessitating the long-term development of the fabrication recipe and specialized equipment. Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.
By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film, we can simultaneously realize strong optical power confinement in the thin film, low optical propagation loss, and strong electro-optic coupling for the fundamental transverse electric mode. Based on our low-index-rib-loaded waveguide structure, we designed and fabricated a thin film lithium niobate (TFLN) modulator, featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm, which is comparable to those of the state-of-the-art etched TFLN modulators.
By alleviating the etching of novel thin films, the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.
Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
Saeed Bohlooli Darian, Jeongmin Oh, Bjorn Paulson, Minju Cho, Globinna Kim, Eunyoung Tak, Inki Kim, Chan-Gi Pack, Jung-Man Namgoong, In-Jeoung Baek, Jun Ki Kim
Opto-Electronic Advances
2025-07-17
Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
Xin Li, Xinye Liao, Junxiang Zeng, Zao Yi, Xin He, Jiagui Wu, Huan Chen, Zhaojian Zhang, Yang Yu, Zhengfu Zhang, Sha Huang, Junbo Yang
Opto-Electronic Advances
2025-07-09
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
Opto-Electronic Science
2025-06-25
Observation of polaronic state assisted sub-bandgap saturable absorption
Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
Opto-Electronic Advances
2025-06-19