(Peer-Reviewed) All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
Qiang Zhang 张强, Yingjun Fang 方英俊, Ning Jiang 江宁, Anran Li 李岸染, Jiahao Qian 钱佳浩, Yiqun Zhang 张逸群, Gang Hu 胡钢, Kun Qiu 邱昆
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
中国 成都 电子科技大学信息与通信工程学院
Opto-Electronic Science
, 2025-08-28
Abstract
Photonic hardware implementation of spiking neural networks, regarded as a viable potential paradigm for ultra-high speed and energy efficiency computing, leverages spatiotemporal spike encoding and event-driven dynamics to simulate brain-like parallel information processing. Silicon-based microring resonators (MRRs) offer a power efficiency and ultrahigh flexibility scheme to mimic biological neuron, however, their substantial potential for integrated neuromorphic systems remains limited by insufficient exploration of MRR-based spiking digital and analog computation.
Here, an all-optical neural dynamics framework, encompassing both excitatory and inhibitory behaviors based on multi-wavelength auxiliary and competition mechanism in an MRR, is proposed numerically. Leveraging multi-wavelength resonance characteristics and wavelength division multiplexing (WDM) technology, a single MRR implements the five fundamental optical digital logic gates: AND, OR, NOT, XNOR and XOR. Besides, the cascading capabilities of MRR-based spiking neurons are demonstrated through multi-level digital logic gates including NAND, NOR, 4-input AND, 8-input AND, and a full adder, emphasizing their promise for large-scale digital logic networks.
Furthermore, an exemplary binary convolution has been achieved by utilizing the proposed MRR-based digital logic operation, illustrating the potential of all-optical binary convolution to compute image gradient magnitudes for edge detection. Such passive photonic neurons and networks promise access to the high transmission speed and low power consumption inherent to optical systems, thus enabling direct hardware-algorithm co-computation and accelerating artificial intelligence.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25
Meta-lens digital image correlation
Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
Opto-Electronic Advances
2025-07-29