Year
Month

(Peer-Reviewed) High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip
Jinli Han 韩金利 ¹ ², Mengqi Li 李梦琦 ², Rongbo Wu 伍荣波 ², Jianping Yu 于建平 ², Lang Gao 高浪 ³, Zhiwei Fang 方致伟 ², Min Wang 汪旻 ², Youting Liang 梁友亭 ², Haisu Zhang 张海粟 ², Ya Cheng 程亚 ¹ ² ³ ⁴ ⁵ ⁶ ⁷
¹ State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
中国 上海 华东师范大学 精密光谱科学与技术国家重点实验室
² The Extreme Optoelectromechanics Laboratory (XXL), School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China
中国 上海 华东师范大学物理与电子科学学院 极端光机电实验室
³ State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
中国 上海 中国科学院上海光学精密机械研究所 强场激光物理国家重点实验室 超强激光科学卓越创新中心
⁴ Hefei National Laboratory, Hefei 230088, China
中国 合肥 合肥国家实验室
⁵ Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
中国 上海 上海量子科学研究中心
⁶ Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
中国 太原 山西大学 极端光学协同创新中心
⁷ Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
中国 济南 山东师范大学 光场调控及应用协同创新中心
Opto-Electronic Science , 2025-06-26
Abstract

Miniaturized erbium-doped waveguide amplifiers attracted great interests in recent decades due to their high gain-efficiency and function-scalability in the telecom C-band. In this work, an erbium-doped thin film lithium niobate waveguide amplifier achieving >10 dB off-chip (fiber-to-fiber) net gain and >20 mW fiber-output amplified power is demonstrated, thanks to the low-propagation-loss waveguides and robust waveguide edge-couplers prepared by the photolithography assisted chemomechanical etching technique.

Systematic investigation on the fabricated waveguide amplifiers reveals remarkable optical gain around the peak wavelength of 1532 nm as well as the low fiber-coupling loss of −1.2 dB/facet. A fiber Bragg-grating based waveguide laser is further demonstrated using the fabricated waveguide amplifier as the external gain chip, which generates >2 mW off-chip power continuous-wave lasing around the gain peak at 1532 nm.

The unambiguous demonstration of fiber-to-fiber net gain of the erbium-doped thinfilm lithium niobate (TFLN) waveguide amplifier as well as its external gain chip application will benefit diverse fields demanding scalable gain elements with high-speed tunability.
High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip_1
High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip_2
High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip_3
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25



  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging        Research progress on generating perfect vortex beams based on metasurfaces
    About
    |
    Contact
    |
    Copyright © PubCard