Year
Month

(Peer-Reviewed) Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Chen Geng 陈庚 ¹, Wang Anqi 王安琪 ¹, Zhang Yi 张怡 ², Zhang Fujun 张富军 ¹, Xu Dongchen 徐栋宸 ¹, Liu Yueqi 刘玥琪 ¹, Zhang Zhi 张植 ¹, Yan Zhijun 闫志君 ¹ ³, Li Zhen 李真 ², Li Hao 李豪 ¹, Sun Qizhen 孙琪真 ¹ ³
¹ School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院
² State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室
³ Hust-Wuxi Research Institute, Huazhong University of Science and Technology, Wuxi 214174, China
中国 无锡 华中科技大学无锡研究院
Opto-Electronic Science , 2025-06-25
Abstract

With the rapid development of lithium batteries, it’s of great significance to ensure the safe use of it. An ultrasound imaging system based on fiber optic ultrasound sensor has been developed to monitor the internal changes of lithium batteries.

Based on Fabry-Perot interferometer (FPI) structure which is made of a glass plate and an optical fiber pigtail, the ultrasound imaging system possesses a high sensitivity of 558 mV/kPa at 500 kHz with the noise equivalent pressure (NEP) of only 63.5 mPa. For the frequency response, the ultrasound sensitivity is higher than 13.1 mV/kPa within the frequency range from 50 kHz to 1 MHz.

Meanwhile, the battery imaging system based on the proposed sensor has a superior resolution as high as 0.5 mm. The performance of battery safety monitoring is verified, in which three commercial lithium-ion ferrous phosphate/graphite (LFP||Gr) batteries are imaged and the state of health (SOH) for different batteries is obtained.

Besides, the wetting process of an anode-free lithium metal batteries (AFLMB) is clearly observed via the proposed system, in which the formation process of the pouch cell is analyzed and the gas-related "unwetting" condition is discovered, representing a significant advancement in battery health monitoring field. In the future, the commercial usage can be realized when sensor array and artificial intelligence technology are adopted.
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system_1
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system_2
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system_3
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system_4
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17
  • Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
  • Saeed Bohlooli Darian, Jeongmin Oh, Bjorn Paulson, Minju Cho, Globinna Kim, Eunyoung Tak, Inki Kim, Chan-Gi Pack, Jung-Man Namgoong, In-Jeoung Baek, Jun Ki Kim
  • Opto-Electronic Advances
  • 2025-07-17
  • Research progress on generating perfect vortex beams based on metasurfaces
  • Xiujuan Liu, Manna Gu, Ying Tian, Mingfeng Zheng, Bo Fang, Zhi Hong, Chee Leong Tan, Xufeng Jing
  • Opto-Electronic Science
  • 2025-07-09
  • Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
  • Xin Li, Xinye Liao, Junxiang Zeng, Zao Yi, Xin He, Jiagui Wu, Huan Chen, Zhaojian Zhang, Yang Yu, Zhengfu Zhang, Sha Huang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-07-09
  • Spectro-polarimetric detection enabled by multidimensional metasurface with quasi-bound states in the continuum
  • Haoyang He, Fangxing Lai, Yan Zhang, Xue Zhang, Chenyi Tian, Xin Li, Yongtian Wang, Shumin Xiao, Lingling Huang
  • Opto-Electronic Advances
  • 2025-06-30
  • Emerging low-dimensional perovskite resistive switching memristors: from fundamentals to devices
  • Shuanglong Wang, Hong Lian, Haifeng Ling, Hao Wu, Tianxiao Xiao, Yijia Huang, Peter Müller-Buschbaum
  • Opto-Electronic Advances
  • 2025-06-27
  • CW laser damage of ceramics induced by air filament
  • Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
  • Opto-Electronic Advances
  • 2025-06-27
  • High fiber-to-fiber net gain in erbium-doped thin film lithium niobate waveguide amplifier as an external gain chip
  • Jinli Han, Mengqi Li, Rongbo Wu, Jianping Yu, Lang Gao, Zhiwei Fang, Min Wang, Youting Liang, Haisu Zhang, Ya Cheng
  • Opto-Electronic Science
  • 2025-06-26
  • Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges
  • Gao Peili, Li Chan, Zhou Hao, He Songhua, Yin Zhen, Ng Kar Wei, Wang Shuangpeng
  • Opto-Electronic Science
  • 2025-06-25
  • Observation of polaronic state assisted sub-bandgap saturable absorption
  • Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
  • Opto-Electronic Advances
  • 2025-06-19
  • Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem
  • Xiaoli Jing, Qiming Liao, Misheng Liang, Bo Wang, Junjie Li, Yongtian Wang, Rui You, Lingling Huang
  • Opto-Electronic Advances
  • 2025-06-19



  • Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges        Observation of polaronic state assisted sub-bandgap saturable absorption
    About
    |
    Contact
    |
    Copyright © PubCard