Year
Month

(Peer-Reviewed) Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms
Hai-Yang Wu 吴海洋 ¹ ² ³, Lei Yang 杨磊 ¹ ² ³, Jiang-Shan Tu ¹ ² ³, Jie Wang 王杰 ⁴, Jin-Ge Li 李金歌 ¹ ² ³, Hong-Ying Lv 吕红英 ¹ ³, Xiao-Niu Yang 杨小牛 ¹ ² ³
¹ State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
中国 长春 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室
² School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
中国 合肥 中国科学技术大学应用化学与工程学院
³ Polymer Composite Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
中国 长春 中国科学院长春应用化学研究所 高分子复合材料工程实验室
⁴ Huangpu Institute of Advanced Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Guangzhou 510530, China
中国 广州 中国科学院长春应用化学研究所 黄埔先进材料研究所
Abstract

Many cell-matrix interaction studies have proved that dynamic changes in the extracellular matrix (ECM) are crucial to maintain cellular properties and behaviors. Thus, developing materials that can recapitulate the dynamic attributes of the ECM is highly desired for three-dimensional (3D) cell culture platforms.

To this end, we sought to develop a hydrogel system that would enable dynamic and reversible turning of its mechanical and biochemical properties, thus facilitating the control of cell culture to imitate the natural ECM. Herein, a hydrogel with dynamic mechanics and a biochemistry based on an addition-fragmentation chain transfer (AFCT) reaction was constructed. Thiol-modified hyaluronic acid (HA) and allyl sulfide-modified ε-poly-L-lysine (EPL) were synthesized to form hydrogels, which were non-swellable and biocompatible.

The reversible modulus of the hydrogel was first achieved through the AFCT reaction; the modulus can also be regulated stepwise by changing the dose of UVA irradiation. Dynamic patterning of fluorescent markers in the hydrogel was also realized. Therefore, this dynamically controllable hydrogel has great potential as a 3D cell culture platform for tissue engineering applications.
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_1
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_2
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_3
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_4
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31



  • Clustering Solver for Displacement-based Numerical Homogenization        Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective hydrogenation of CO₂ into ethanol
    About
    |
    Contact
    |
    Copyright © PubCard