(Peer-Reviewed) An acceleration strategy for randomize-then-optimize sampling via deep neural networks
	
		Liang Yan 闫亮 ¹, Tao Zhou 周涛 ²
			
				¹ School of Mathematics, Southeast University, Nanjing Center for Applied Mathematics, Nanjing, 211135, China
中国 南京 东南大学数学学院南京应用数学中心
² LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
中国 北京 中国科学院 计算数学与科学工程计算研究所 科学与工程计算国家重点实验室
			
			
		
		
			
		
		
	 
	
	
	Abstract
Randomize-then-optimize (RTO) is widely used for sampling from posterior distributions in Bayesian inverse problems. However, RTO can be computationally intensive for complexity problems due to repetitive evaluations of the expensive forward model and its gradient. In this work, we present a novel goal-oriented deep neural networks (DNN) surrogate approach to substantially reduce the computation burden of RTO. 
In particular, we propose to drawn the training points for the DNN-surrogate from a local approximated posterior distribution – yielding a flexible and efficient sampling algorithm that converges to the direct RTO approach. We present a Bayesian inverse problem governed by elliptic PDEs to demonstrate the computational accuracy and efficiency of our DNN-RTO approach, which shows that DNN-RTO can significantly outperform the traditional RTO.
	
	
	
	
	
	
		    
		    
    			
		    
    			
		        Meta-lens digital image correlation
		        
		        Zhou Zhao,  Xiaoyuan Liu,  Yu Ji,  Yukun Zhang,  Yong Chen,  Zhendong Luo,  Yuzhou Song,  Zihan Geng,  Takuo Tanaka,  Fei Qi,  Shengxian Shi,  Mu Ku Chen
		        Opto-Electronic Advances
		        
		        		        		2025-07-29
		        	
		     
		    
    			
		        Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
		        
		        Jiapu Li,  Xinghua Liu,  Zhuohua Xiao,  Shengjiang Yang,  Zhanfei Li,  Xin Gui,  Meng Shen,  He Jiang,  Xuelei Fu,  Yiming Wang,  Song Gong,  Tuan Guo,  Zhengying Li
		        Opto-Electronic Science
		        
		        		        		2025-07-25
		        	
		     
		    
    			
		    
    			
		        Review for wireless communication technology based on digital encoding metasurfaces
		        
		        Haojie Zhan,  Manna Gu,  Ying Tian,  Huizhen Feng,  Mingmin Zhu,  Haomiao Zhou,  Yongxing Jin,  Ying Tang,  Chenxia Li,  Bo Fang,  Zhi Hong,  Xufeng Jing,  Le Wang
		        Opto-Electronic Advances
		        
		        		        		2025-07-17