Year
Month
(Peer-Reviewed) The m6A methylation regulates gonadal sex differentiation in chicken embryo
Jianbo Li ¹, Xiuan Zhang ¹, Xiqiong Wang 王喜琼 ¹, Congjiao Sun 孙从佼 ¹, Jiangxia Zheng 郑江霞 ¹, Junying Li 李俊英 ¹, Guoqiang Yi 易国强 ², Ning Yang 杨宁 ¹
¹ National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
中国 北京 中国农业大学畜禽育种国家工程实验室 农业农村部动物遗传育种与繁殖(家畜)重点实验室
² Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
中国 深圳 中国农业科学院深圳农业基因组研究所 岭南现代农业科学与技术广东省实验室深圳分中心
Abstract

Background

As a ubiquitous reversible epigenetic RNA modification, N6-methyladenosine (m6A) plays crucial regulatory roles in multiple biological pathways. However, its functional mechanisms in sex determination and differentiation during gonadal development of chicken embryos are not clear. Therefore, we established a transcriptome-wide m6A map in the female and male chicken left gonads of embryonic day 7 (E7) by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to offer insight into the landscape of m6A methylation and investigate the post-transcriptional modification underlying gonadal differentiation.

Results

The chicken embryonic gonadal transcriptome was extensively methylated. We found 15,191 and 16,111 m6A peaks in the female and male left gonads, respectively, which were mainly enriched in the coding sequence (CDS) and stop codon. Among these m6A peaks, we identified that 1013 and 751 were hypermethylated in females and males, respectively. These differential peaks covered 281 and 327 genes, such as BMP2, SMAD2, SOX9 and CYP19A1, which were primarily associated with development, morphogenesis and sex differentiation by functional enrichment. Further analysis revealed that the m6A methylation level was positively correlated with gene expression abundance. Furthermore, we found that YTHDC2 could regulate the expression of sex-related genes, especially HEMGN and SOX9, in male mesonephros/gonad mingle cells, which was verified by in vitro experiments, suggesting a regulatory role of m6A methylation in chicken gonad differentiation.

Conclusions

This work provided a comprehensive m6A methylation profile of chicken embryonic gonads and revealed YTHDC2 as a key regulator responsible for sex differentiation. Our results contribute to a better understanding of epigenetic factors involved in chicken sex determination and differentiation and to promoting the future development of sex manipulation in poultry industry.
The m6A methylation regulates gonadal sex differentiation in chicken embryo_1
The m6A methylation regulates gonadal sex differentiation in chicken embryo_2
The m6A methylation regulates gonadal sex differentiation in chicken embryo_3
The m6A methylation regulates gonadal sex differentiation in chicken embryo_4
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16
  • Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
  • Jiangbo Lyu, Tao Zhu, Yan Zhou, Zhenmin Chen, Yazhi Pi, Zhengtong Liu, Xiaochuan Xu, Ke Xu, Xu Ma, Lei Wang, Zizheng Cao, Shaohua Yu
  • Opto-Electronic Science
  • 2024-01-09
  • Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
  • Yuting Xiao, Lianwei Chen, Mingbo Pu, Mingfeng Xu, Qi Zhang, Yinghui Guo, Tianqu Chen, Xiangang Luo
  • Opto-Electronic Science
  • 2024-01-05
  • Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
  • Chunyan Chu, Zhentao Liu, Mingliang Chen, Xuehui Shao, Guohai Situ, Yuejin Zhao, Shensheng Han
  • Opto-Electronic Advances
  • 2023-3-10
  • Flat soliton microcomb source
  • Xinyu Wang, Xuke Qiu, Mulong Liu, Feng Liu, Mengmeng Li, Linpei Xue, Bohan Chen, Mingran Zhang, Peng Xie
  • Opto-Electronic Science
  • 2023-12-29



  • Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection                                Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement
    About
    |
    Contact
    |
    Copyright © PubCard