(Peer-Reviewed) Novel all-fiber-optic technology for control and multi-color probing of neural circuits in freely-moving animals
Xingde Li 李兴德
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
Opto-Electronic Advances, 2023-07-20
Abstract
All-fiber-optic photometry system based on a multi-branch fiber bundle has achieved, for the first time, simultaneous optogenetic manipulation and dual-color recording of neuronal Ca2+ or neurotransmitter signals in freely moving animals, providing a powerful tool for comprehensive analysis of neural circuit function and the study of neurological diseases.
Light-induced enhancement of exciton transport in organic molecular crystal
Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
Opto-Electronic Advances
2025-03-28
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
Opto-Electronic Advances
2025-03-28
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
Opto-Electronic Advances
2025-01-22