(Peer-Reviewed) Laser direct writing of Ga₂O₃/liquid metal-based flexible humidity sensors
Songya Cui 崔颂雅 ¹ ², Yuyao Lu 陆雨姚 ¹, Depeng Kong 孔德朋 ¹, Huayu Luo 罗华昱 ¹, Liang Peng 彭亮 ², Geng Yang 杨赓 ¹, Huayong Yang 杨华勇 ¹, Kaichen Xu 徐凯臣 ¹
¹ State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China
中国 杭州 浙江大学机械工程学院 流体动力与机电系统国家重点实验室
² School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
中国 杭州 浙大城市学院 信息与电气工程学院
Opto-Electronic Advances, 2023-07-20

Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions. However, achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge. In this work, a wearable capacitive-type Ga₂O₃/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique.

Owing to the photothermal effect of laser, the Ga₂O₃-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19 Ω·cm, while the untreated regions serve as active sensing layers in response to moisture changes. Under 95% relative humidity, the humidity sensor displays a highly stable performance along with rapid response and recover time.

Utilizing these superior properties, the Ga₂O₃/liquid metal-based humidity sensor is able to monitor human respiration rate, as well as skin moisture of the palm under different physiological states for healthcare monitoring.
Laser direct writing of Ga₂O₃/liquid metal-based flexible humidity sensors_1
Laser direct writing of Ga₂O₃/liquid metal-based flexible humidity sensors_2
Laser direct writing of Ga₂O₃/liquid metal-based flexible humidity sensors_3
  • Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity
  • Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao
  • Opto-Electronic Advances
  • 2023-07-20
  • Encoding physics to learn reaction–diffusion processes
  • Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, Yang Liu
  • Nature Machine Intelligence
  • 2023-07-17
  • Accurate medium-range global weather forecasting with 3D neural networks
  • Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, Qi Tian
  • Nature
  • 2023-07-05
  • Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core
  • Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Tiegen Liu
  • Opto-Electronic Advances
  • 2023-06-25
  • In-flow holographic tomography boosts lipid droplet quantification
  • Michael John Fanous, Aydogan Ozcan
  • Opto-Electronic Advances
  • 2023-06-25
  • The second fusion of laser and aerospace—an inspiration for high energy lasers
  • Xiaojun Xu, Rui Wang, Zining Yang
  • Opto-Electronic Advances
  • 2023-06-25
  • Hot electron electrochemistry at silver activated by femtosecond laser pulses
  • Oskar Armbruster, Hannes Pöhl, Wolfgang Kautek
  • Opto-Electronic Advances
  • 2023-06-25
  • Highly sensitive microfiber ultrasound sensor for photoacoustic imaging
  • Perry Ping Shum, Gerd Keiser, Georges Humbert, Dora Juan Juan Hu, A. Ping Zhang, Lei Su
  • Opto-Electronic Advances
  • 2023-06-25
  • Integral imaging-based tabletop light field 3D display with large viewing angle
  • Yan Xing, Xing-Yu Lin, Lin-Bo Zhang, Yun-Peng Xia, Han-Le Zhang, Hong-Yu Cui, Shuang Li, Tong-Yu Wang, Hui Ren, Di Wang, Huan Deng, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2023-06-25
  • Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption
  • Zhenyuan Lin, Kuan Liu, Tun Cao, Minghui Hong
  • Opto-Electronic Advances
  • 2023-06-25
  • 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography
  • Kexuan Liu, Jiachen Wu, Zehao He, Liangcai Cao
  • Opto-Electronic Advances
  • 2023-05-30

  • The cornerstone of fiber-optic distributed vibration/acoustic sensing: Ф-OTDR                                Novel all-fiber-optic technology for control and multi-color probing of neural circuits in freely-moving animals
    Copyright © PubCard