(Peer-Reviewed) Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence
Zhuo Wang 王卓 ¹, Bo Zhang 张博 ¹, Dezhi Tan 谭德志 ², Jianrong Qiu 邱建荣 ¹ ³
¹ State Key Laboratory of Modern Optical Instrumentation, and College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
中国 浙江 浙江大学光电科学与工程学院 现代光学仪器国家重点实验室
² Zhejiang Lab, Hangzhou 311100, China
中国 杭州 之江实验室
³ CAS Center for Excellence in Ultra-intense Laser Science, Chinese Academy of Sciences, Shanghai 201800, China
中国 上海 中国科学院 超强激光科学卓越创新中心
Opto-Electronic Advances, 2022-08-31
Abstract
Long-term optical data storage (ODS) technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data. Here, ODS with an ultralong lifetime of 2107 years is attained with single ultrafast laser pulse induced reduction of Eu3+ ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.
We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm2. Furthermore, the active ions of Eu2+ exhibit strong and broadband emission with the full width at half maximum reaching 190 nm, and the photoluminescence (PL) is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses. The developed technology and materials will be of great significance in photonic applications such as long-term ODS.
Light-induced enhancement of exciton transport in organic molecular crystal
Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
Opto-Electronic Advances
2025-03-28
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
Opto-Electronic Advances
2025-03-28