Year
Month
(Peer-Reviewed) Broad-band spatial light modulation with dual epsilon-near-zero modes
Long Wen 文龙 ¹, Xianghong Nan 南向红 ¹, Jiaxiang Li 李家祥 ¹, David R. S. Cumming ³, Xin Hu 胡鑫 ², Qin Chen 陈沁 ¹
¹ Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
中国 广州 暨南大学纳米光子学研究院
² Hangzhou Dianzi University, Hangzhou 310018, China
中国 杭州 杭州电子科技大学
³ James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
Opto-Electronic Advances, 2022-05-27
Abstract

Epsilon-near-zero (ENZ) modes have attracted extensive interests due to its ultrasmall mode volume resulting in extremely strong light-matter interaction (LMI) for active optoelectronic devices. The ENZ modes can be electrically toggled between on and off states with a classic metal-insulator-semiconductor (MIS) configuration and therefore allow access to electro-absorption (E-A) modulation.

Relying on the quantum confinement of charge-carriers in the doped semiconductor, the fundamental limitation of achieving high modulation efficiency with MIS junction is that only a nanometer-thin ENZ confinement layer can contribute to the strength of E-A. Further, for the ENZ based spatial light modulation, the requirement of resonant coupling inevitably leads to small absolute modulation depth and limited spectral bandwidth as restricted by the properties of the plasmonic or high-Q resonance systems.

In this paper, we proposed and demonstrated a dual-ENZ mode scheme for spatial light modulation with a TCOs/dielectric/silicon nanotrench configuration for the first time. Such a SIS junction can build up two distinct ENZ layers arising from the induced charge-carriers of opposite polarities adjacent to both faces of the dielectric layer. The non-resonant and low-loss deep nanotrench framework allows the free space light to be modulated efficiently via interaction of dual ENZ modes in an elongated manner.

Our theoretical and experimental studies reveal that the dual ENZ mode scheme in the SIS configuration leverages the large modulation depth, extended spectral bandwidth together with high speed switching, thus holding great promise for achieving electrically addressed spatial light modulation in near- to mid-infrared regions.
Broad-band spatial light modulation with dual epsilon-near-zero modes_1
Broad-band spatial light modulation with dual epsilon-near-zero modes_2
Broad-band spatial light modulation with dual epsilon-near-zero modes_3
Broad-band spatial light modulation with dual epsilon-near-zero modes_4
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17



  • The reservoir learning power across quantum many-body localization transition                                Incorporation of a histone mutant with H3K56 site substitution perturbs the replication machinery in mouse embryonic stem cells
    About
    |
    Contact
    |
    Copyright © PubCard