(Peer-Reviewed) Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data
Weiran Chen ¹, Md Wahiduzzaman ¹, Quan Li ¹ , Yixue Li 李亦学 ¹ ², Guangyong Zheng 郑广勇 ¹, Tao Huang 黄涛 ¹
¹ Bio-Med Big Data Center, Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
中国 上海 中国科学院上海营养与健康研究所 计算生物学重点实验室 生物医学大数据中心
² School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
中国 杭州 中国科学院大学 杭州高等研究院 生命与健康科学学院
Quantitative Biology, 2022-12-15


Single-cell RNA sequencing (scRNA-seq) technology is now becoming a widely applied method of transcriptome exploration that helps to reveal cell-type composition as well as cell-state heterogeneity for specific biological processes. Distinct sequencing platforms and processing pipelines may contribute to various results even for the same sequencing samples. Therefore, benchmarking sequencing platforms and processing pipelines was considered as a necessary step to interpret scRNA-seq data. However, recent comparing efforts were constrained in sequencing platforms or analyzing pipelines. There is still a lack of knowledge of analyzing pipelines matched with specific sequencing platforms in aspects of sensitivity, precision, and so on.


We downloaded public scRNA-seq data that was generated by two distinct sequencers, NovaSeq 6000 and MGISEQ 2000. Then data was processed through the Drop-seq-tools, UMI-tools and Cell Ranger pipeline respectively. We calculated multiple measurements based on the expression profiles of the six platform-pipeline combinations.


We found that all three pipelines had comparable performance, the Cell Ranger pipeline achieved the best performance in precision while UMI-tools prevailed in terms of sensitivity and marker calling.


Our work provided an insight into the selection of scRNA-seq data processing tools for two sequencing platforms as well as a framework to evaluate platform-pipeline combinations.
Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data_1
Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data_2
Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data_3
Comparative analysis of NovaSeq 6000 and MGISEQ 2000 single-cell RNA sequencing data_4
  • Deep-red and near-infrared organic lasers based on centrosymmetric molecules with excited-state intramolecular double proton transfer activity
  • Chang-Cun Yan, Zong-Lu Che, Wan-Ying Yang, Xue-Dong Wang, Liang-Sheng Liao
  • Opto-Electronic Advances
  • 2023-07-20
  • Encoding physics to learn reaction–diffusion processes
  • Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, Yang Liu
  • Nature Machine Intelligence
  • 2023-07-17
  • Accurate medium-range global weather forecasting with 3D neural networks
  • Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, Qi Tian
  • Nature
  • 2023-07-05
  • Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core
  • Jianying Jing, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Tiegen Liu
  • Opto-Electronic Advances
  • 2023-06-25
  • In-flow holographic tomography boosts lipid droplet quantification
  • Michael John Fanous, Aydogan Ozcan
  • Opto-Electronic Advances
  • 2023-06-25
  • The second fusion of laser and aerospace—an inspiration for high energy lasers
  • Xiaojun Xu, Rui Wang, Zining Yang
  • Opto-Electronic Advances
  • 2023-06-25
  • Hot electron electrochemistry at silver activated by femtosecond laser pulses
  • Oskar Armbruster, Hannes Pöhl, Wolfgang Kautek
  • Opto-Electronic Advances
  • 2023-06-25
  • Highly sensitive microfiber ultrasound sensor for photoacoustic imaging
  • Perry Ping Shum, Gerd Keiser, Georges Humbert, Dora Juan Juan Hu, A. Ping Zhang, Lei Su
  • Opto-Electronic Advances
  • 2023-06-25
  • Integral imaging-based tabletop light field 3D display with large viewing angle
  • Yan Xing, Xing-Yu Lin, Lin-Bo Zhang, Yun-Peng Xia, Han-Le Zhang, Hong-Yu Cui, Shuang Li, Tong-Yu Wang, Hui Ren, Di Wang, Huan Deng, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2023-06-25
  • Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption
  • Zhenyuan Lin, Kuan Liu, Tun Cao, Minghui Hong
  • Opto-Electronic Advances
  • 2023-06-25

  • Chiral detection of biomolecules based on reinforcement learning                                High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication
    Copyright © PubCard