Year
Month
(Peer-Reviewed) Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment
Xin Liu 刘欣 ¹ ², Qian Chen 陈倩 ¹ ², Jun Zeng 曾军 ¹ ², Yangjian Cai 蔡阳健 ¹ ², Chunhao Liang 梁春豪 ¹ ²
¹ Shandong Provincial Engineering and Technical Center of Light Manipulation & Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
中国 济南 山东师范大学物理与电子科学学院 山东省光场调控工程技术中心 山东省光学与光子器件技术重点实验室
² Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
中国济南 山东师范大学光场调控及应用协同创新中心
Opto-Electronic Science, 2023-03-09
Abstract

The optical coherence structures of random optical fields can determine beam propagation behavior, light–matter interactions, etc. Their performance makes a light beam robust against turbulence, scattering, and distortion. Recently, we proposed optical coherence encryption and robust far-field optical imaging techniques. All related applications place a high demand on precision in the experimental measurements of complex optical coherence structures, including their real and imaginary parts.

Past studies on these measurements have mainly adopted theoretical mathematical approximations, limited to Gaussian statistic involving speckle statistic (time-consuming), or used complicated and delicate optical systems in the laboratory. In this study, we provide: a robust, convenient, and fast protocol to measure the optical coherence structures of random optical fields via generalized Arago (or Poisson) spot experiments with rigorous mathematical solutions. Our proposal only requires to capture the intensity thrice, and is applicable to any optical coherence structures, regardless of their type or optical statistics.

The theoretical and experimental results demonstrated that the real and imaginary parts of the structures could be simultaneously recovered with high precision. We believe that such a protocol can be widely employed in phase measurement, optical imaging, and image transfer.
Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment_1
Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment_2
Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment_3
Measurement of optical coherence structures of random optical fields using generalized Arago spot experiment_4
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07



  • Low-loss chip-scale programmable silicon photonic processor                                Specialty optical fibers for advanced sensing applications
    About
    |
    Contact
    |
    Copyright © PubCard