(Peer-Reviewed) High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes
Chi Ding 丁驰, Junjie Wang 王俊杰, Yu Han 韩瑜, Jianan Yuan 袁嘉男, Hao Gao 高豪, Jian Sun 孙建
National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
中国 南京 南京大学物理学院 微结构科学与技术协同创新中心 固体微结构物理国家重点实验室
Abstract
Polymeric nitrogen as a new class of high energy density materials has promising applications. We develop a new scheme of crystal structure searching in a confined space using external confining potentials fitted from first-principles calculations.
As a showcase, this method is employed to systematically explore novel polymeric nitrogen structures confined in single-walled carbon nanotubes. Several quasi-one-dimensional (1D) single-bonded polymeric nitrogen structures are realized, two of them are composed of nanotubes instead of chains. These new polymeric nitrogen phases are mechanically stable at ambient pressure and temperature according to phonon calculations and ab initio molecular dynamics simulations.
It is revealed that the stabilization of zigzag and armchair chains confined in carbon nanotubes (CNTs) are mostly attributed to the charge transfer from carbon to nitrogen. However, for the novel nitrogen nanotube systems, electrons overlapping in the middle space provide strong Coulomb repulsive forces, which not only induce charge transfer from the middle to the sides but also stabilize the polymeric nitrogen.
Our work provides a new strategy for designing novel high-energy-density polymeric nitrogen materials, as well as other new materials with the help of confined space inside porous systems, such as nanotubes, covalent organic frameworks, and zeolites.
Light-induced enhancement of exciton transport in organic molecular crystal
Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
Opto-Electronic Advances
2025-03-28
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
Opto-Electronic Advances
2025-03-28
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
Opto-Electronic Advances
2025-01-22