Year
Month
(Peer-Reviewed) Targeted design of advanced electrocatalysts by machine learning
Letian Chen 陈乐添 ¹, Xu Zhang 张旭 ¹ ², An Chen 陈安 ¹, Sai Yao 姚赛 ¹, Xu Hu 胡绪 ¹, Zhen Zhou 周震 ¹ ²
¹ School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
中国 天津 南开大学材料科学与工程学院 新能源材料化学研究所 可再生能源能量转换与存储中心 先进能源材料化学教育部重点实验室
² Engineering Research Center of Advanced Functional Material, Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
中国 河南 郑州 郑州大学化工学院 先进功能材料制造教育部工程研究中心
Abstract

Exploring the production and application of clean energy has always been the core of sustainable development. As a clean and sustainable technology, electrocatalysis has been receiving widespread attention. It is crucial to achieve efficient, stable and cheap electrocatalysts. However, the traditional “trial and error” method is time-consuming, laborious and costly.

In recent years, with the significant increase in computing power, computations have played an important role in electrocatalyst design. Nevertheless, it is still difficult to search for advanced electrocatalysts in the vast chemical space through traditional density functional theory (DFT) computations. Fortunately, the development of machine learning and interdisciplinary integration will inject new impetus into targeted design of electrocatalysts. Machine learning is able to predict electrochemical performances with an accuracy close to DFT.

Here we provide an overview of the application of machine learning in electrocatalyst design, including the prediction of structure, thermodynamic properties and kinetic barriers. We also discuss the potential of explicit solvent model combined with machine learning molecular dynamics in this field. Finally, the favorable circumstances and challenges are outlined for the future development of machine learning in electrocatalysis. The studies on electrochemical processes by machine learning will further realize targeted design of high-efficiency electrocatalysts.
Targeted design of advanced electrocatalysts by machine learning_1
Targeted design of advanced electrocatalysts by machine learning_2
Targeted design of advanced electrocatalysts by machine learning_3
Targeted design of advanced electrocatalysts by machine learning_4
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28



  • Spatio-Temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms                                Calcium hydride reduced high-quality Nd–Fe–B powder from Nd–Fe–B sintered magnet sludge
    About
    |
    Contact
    |
    Copyright © PubCard