(Peer-Reviewed) Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
Xuan Yang 杨烜 ¹, Xinfeng Zhang 张信峰 ¹, Tianxu Zhang 张天旭 ¹, Linyi Xiang 向霖屹 ¹, Bin Xie 谢斌 ², Xiaobing Luo 罗小兵 ¹
¹ School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学能源与动力工程学院
² School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学机械科学与工程学院
Opto-Electronic Advances, 2024-07-05
Abstract
Thermal management of nanoscale quantum dots (QDs) in light-emitting devices is a long-lasting challenge. The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers. However, this strategy failed to deliver the QDs' heat generation across a long distance, and the accumulated heat still causes considerable temperature rise of QDs-polymer composite, which eventually menaces the performance and reliability of light-emitting devices.
Inspired by the radially aligned fruit fibers in oranges, we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite. Ultrahigh molecular weight polyethylene fibers (UPEF) were radially aligned throughout the polymer matrix, thus facilitating massive efficient heat dissipation of the QDs. Under a UPEF filling fraction of 24.46 vol%, the in-plane thermal conductivity of QDs-radially aligned UPEF composite (QDs-RAPE) could reach 10.45 W m⁻¹ K⁻¹, which is the highest value of QDs-polymer composite reported so far.
As a proof of concept, the QDs' working temperature can be reduced by 342.5 °C when illuminated by a highly concentrated laser diode (LD) under driving current of 1000 mA, thus improving their optical performance. This work may pave a new way for next generation high-power QDs lighting applications.
Light-induced enhancement of exciton transport in organic molecular crystal
Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
Opto-Electronic Advances
2025-03-28
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
Opto-Electronic Advances
2025-03-28