Year
Month
(Peer-Reviewed) Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
Xuan Yang 杨烜 ¹, Xinfeng Zhang 张信峰 ¹, Tianxu Zhang 张天旭 ¹, Linyi Xiang 向霖屹 ¹, Bin Xie 谢斌 ², Xiaobing Luo 罗小兵 ¹
¹ School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学能源与动力工程学院
² School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学机械科学与工程学院
Opto-Electronic Advances, 2024-07-05
Abstract

Thermal management of nanoscale quantum dots (QDs) in light-emitting devices is a long-lasting challenge. The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers. However, this strategy failed to deliver the QDs' heat generation across a long distance, and the accumulated heat still causes considerable temperature rise of QDs-polymer composite, which eventually menaces the performance and reliability of light-emitting devices.

Inspired by the radially aligned fruit fibers in oranges, we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite. Ultrahigh molecular weight polyethylene fibers (UPEF) were radially aligned throughout the polymer matrix, thus facilitating massive efficient heat dissipation of the QDs. Under a UPEF filling fraction of 24.46 vol%, the in-plane thermal conductivity of QDs-radially aligned UPEF composite (QDs-RAPE) could reach 10.45 W m⁻¹ K⁻¹, which is the highest value of QDs-polymer composite reported so far.

As a proof of concept, the QDs' working temperature can be reduced by 342.5 °C when illuminated by a highly concentrated laser diode (LD) under driving current of 1000 mA, thus improving their optical performance. This work may pave a new way for next generation high-power QDs lighting applications.
Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers_1
Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers_2
Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers_3
Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers_4
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25



  • Seeing at a distance with multicore fibers                                Reconfigurable optical neural networks with Plug-and-Play metasurfaces
    About
    |
    Contact
    |
    Copyright © PubCard