Year
Month
(Peer-Reviewed) Multifunctional mixed analog/digital signal processor based on integrated photonics
Yichen Wu 吴一晨 ¹, Qipeng Yang 杨其鹏 ¹, Bitao Shen 沈碧涛 ¹, Yuansheng Tao 陶源盛 ¹, Xuguang Zhang 张绪光 ¹, Zihan Tao 陶子涵 ¹, Luwen Xing 邢露文 ², Zhangfeng Ge 葛张峰 ³, Tiantian Li 李田甜 ⁴, Bowen Bai 白博文 ¹, Haowen Shu 舒浩文 ¹ ⁵, Xingjun Wang 王兴军 ¹ ³ ⁵ ⁶
¹ State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
中国 北京 北京大学电子学院 区域光纤通信网与新型光通信系统国家重点实验室
² College of Engineering, Peking University, Beijing 100871, China
中国 北京 北京大学工学院
³ Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
中国 南通 北京大学 长三角光电科学研究院
⁴ School of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
中国 西安 西安邮电大学电子工程学院
⁵ Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
中国 北京 北京大学 纳光电子前沿科学中心
⁶ Peng Cheng Laboratory, Shenzhen 518055, China
中国 深圳 鹏城实验室
Opto-Electronic Science, 2024-08-16
Abstract

Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation. Compared to its electronic counterpart, it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility, particularly through integrated photonics. However, by far the on-chip solutions for optical signal processing are often tailored to specific tasks, which lacks versatility across diverse applications.

Here, we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator (SOI) platform with a compact and efficient manner. Comprehensive and in-depth analyses for the architecture are conducted at levels of device, system, and application. Accompanied by appropriate configuring schemes, the photonic circuitry supports loading and processing both analog and digital signals simultaneously. Three distinct tasks are facilitated with one single chip across several mainstream fields, spanning optical computing, microwave photonics, and optical communications.

Notably, it has demonstrated competitive performance in functions like image processing, spectrum filtering, and electro-optical bandwidth equalization. Boasting high universality and a compact form factor, the proposed architecture is poised to be instrumental for next-generation functional fusion systems.
Multifunctional mixed analog/digital signal processor based on integrated photonics_1
Multifunctional mixed analog/digital signal processor based on integrated photonics_2
Multifunctional mixed analog/digital signal processor based on integrated photonics_3
Multifunctional mixed analog/digital signal processor based on integrated photonics_4
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07



  • Optical micro/nanofiber enabled tactile sensors and soft actuators: A review                                Seeing at a distance with multicore fibers
    About
    |
    Contact
    |
    Copyright © PubCard