(Peer-Reviewed) Decontamination of infected plant seeds utilizing atmospheric gliding arc discharge plasma treatment
Chengcheng Liu 刘成成 ¹, Jianfeng Cui 崔见凤 ¹, Di Zhang 张頔 ¹, Hongwei Tang 汤红卫 ¹, Biao Gong 巩彪 ², Shengxuan Zu 祖圣宣 ¹, Chongshan Zhong 仲崇山 ¹
¹ College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, People's Republic of China
中华人民共和国 北京 中国农业大学信息与电气工程学院
² College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
中华人民共和国 泰安 山东农业大学园艺科学与工程学院
Plasma Science and Technology, 2021-08-27
Abstract
In agriculture production, plant health is threatened by pathogens parasitic on seeds; hence, it is necessary to disinfect harvested seeds before germination. In this study, a technique of gliding arc plasma treatment was proposed and investigated. The experiment was conducted to treat Astragalus membranaceus (A. membranaceus) seeds that were artificially infected with Fusarium oxysporum (F. oxysporum).
The plasma treatment duration varied from 30 s to 270 s. Direct and indirect treatments were compared to evaluate the inactivation efficiency of the F. oxysporum spores on the surface of seeds. The results indicated that the direct treatment behaved significantly better in disinfection than the indirect way. Meanwhile, experiments of the quantitative assessment of seed germination were also conducted, including the germination rate, the germination potential, and the germination index. The results showed that the inactivation efficiency increased as the plasma treatment time was extended. When the treatment time was 90 s, the inactivation efficiency reached more than 98%. The plasma treatment of 270 s had a complete devitalization of F. oxysporum spores on the surface of the seeds. After the treatment of 30 s and 90 s, the seed germination parameters improved significantly.
This study verified the inactivation efficacy of gliding arc discharge plasma under atmospheric pressure. The technique of gliding arc treatment shows advantages of energy saving and adaptation and has the potential to be utilized in industry.
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17
Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
Saeed Bohlooli Darian, Jeongmin Oh, Bjorn Paulson, Minju Cho, Globinna Kim, Eunyoung Tak, Inki Kim, Chan-Gi Pack, Jung-Man Namgoong, In-Jeoung Baek, Jun Ki Kim
Opto-Electronic Advances
2025-07-17
Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
Xin Li, Xinye Liao, Junxiang Zeng, Zao Yi, Xin He, Jiagui Wu, Huan Chen, Zhaojian Zhang, Yang Yu, Zhengfu Zhang, Sha Huang, Junbo Yang
Opto-Electronic Advances
2025-07-09
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27