Year
Month
(Peer-Reviewed) A small microring array that performs large complex-valued matrix-vector multiplication
Junwei Cheng 成骏伟 ¹, Yuhe Zhao 赵雨赫 ¹, Wenkai Zhang ¹, Hailong Zhou 周海龙 ¹ ² ³, Dongmei Huang 黄冬梅 ³ ⁴, Qing Zhu ⁵, Yuhao Guo 郭宇昊 ⁵, Bo Xu ⁵, Jianji Dong 董建绩 ¹, Xinliang Zhang 张新亮 ¹
¹ Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家实验室
² Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
中国 香港 香港理工大学 电子及资讯工程学系 光子技术研究院
³ The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
中国 深圳 香港理工大学深圳研究院
⁴ Photonics Research Centre, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
中国 香港 香港理工大学 电机工程学系 光子技术研究院
⁵ Institute of Strategic Research, Huawei Technologies, Shenzhen 518129, China
中国 深圳 华为战略研究院
Abstract

As an important computing operation, photonic matrix–vector multiplication is widely used in photonic neutral networks and signal processing. However, conventional incoherent matrix–vector multiplication focuses on real-valued operations, which cannot work well in complex-valued neural networks and discrete Fourier transform.

In this paper, we propose a systematic solution to extend the matrix computation of microring arrays from the real-valued field to the complex-valued field, and from small-scale (i.e., 4 × 4) to large-scale matrix computation (i.e., 16 × 16). Combining matrix decomposition and matrix partition, our photonic complex matrix–vector multiplier chip can support arbitrary large-scale and complex-valued matrix computation. We further demonstrate Walsh-Hardmard transform, discrete cosine transform, discrete Fourier transform, and image convolutional processing.

Our scheme provides a path towards breaking the limits of complex-valued computing accelerator in conventional incoherent optical architecture. More importantly, our results reveal that an integrated photonic platform is of huge potential for large-scale, complex-valued, artificial intelligence computing and signal processing.
A small microring array that performs large complex-valued matrix-vector multiplication_1
A small microring array that performs large complex-valued matrix-vector multiplication_2
A small microring array that performs large complex-valued matrix-vector multiplication_3
A small microring array that performs large complex-valued matrix-vector multiplication_4
  • Multi-wavelength nanowire micro-LEDs for future high speed optical communication
  • Ayush Pandey, Zetian Mi
  • Opto-Electronic Advances
  • 2024-03-20
  • Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
  • Dehai Liang, Saif M. H. Qaid, Xin Yang, Shuangyi Zhao, Binbin Luo, Wensi Cai, Qingkai Qian, Zhigang Zang
  • Opto-Electronic Advances
  • 2024-03-20
  • Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
  • Yuqiang Ding, Zhenyi Luo, Garimagai Borjigin, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2024-03-20
  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • Yinan Zhang, Yinggang Chen, Tong Wang, Qian Zhu, Min Gu
  • Opto-Electronic Advances
  • 2024-03-12
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Towards the performance limit of catenary meta-optics via field-driven optimization
  • Siran Chen, Yingli Ha, Fei Zhang, Mingbo Pu, Hanlin Bao, Mingfeng Xu, Yinghui Guo, Yue Shen, Xiaoliang Ma, Xiong Li, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-01-31
  • Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips
  • Xiaohu Zhang, Qinmiao Chen, Dongliang Tang, Kaifeng Liu, Haimo Zhang, Lintong Shi, Mengyao He, Yongcai Guo, Shumin Xiao
  • Opto-Electronic Advances
  • 2024-01-31



  • Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography                                Time resolved studies reveal the origin of the unparalleled high efficiency of one nanosecond laser ablation in liquids
    About
    |
    Contact
    |
    Copyright © PubCard