Year
Month
(Peer-Reviewed) Towards the performance limit of catenary meta-optics via field-driven optimization
Siran Chen ¹ ² ³, Yingli Ha 哈颖丽 ¹ ² ⁴, Fei Zhang 张飞 ¹ ², ⁴, Mingbo Pu 蒲明博 ¹ ² ³ ⁴, Hanlin Bao 包汉霖 ¹ ² ³, Mingfeng Xu 徐明峰 ¹ ² ⁴, Yinghui Guo 郭迎辉 ¹ ² ³ ⁴, Yue Shen ⁵, Xiaoliang Ma 马晓亮 ¹ ² ³, Xiong Li 李雄 ¹ ² ³, Xiangang Luo 罗先刚 ¹ ²
¹ National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院 光场调控科学技术全国重点实验室
² State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 微细加工光学技术国家重点实验室
³ College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学 材料科学与光电技术学院
⁴ Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所矢量光场研究中心
⁵ Department of Electrical and Computer Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095, USA
Opto-Electronic Advances, 2024-01-31
Abstract

Catenary optics enables metasurfaces with higher efficiency and wider bandwidth, and is highly anticipated in the imaging system, super-resolution lithography, and broadband absorbers. However, the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.

Here, perfect control of both local geometric and propagation phases is realized through field-driven optimization, in which the field distribution is calculated under real boundary conditions. Different from other optimization methods requiring a mass of iterations, the proposed design method requires less than ten iterations to get the efficiency close to the optimal value. Based on the library of shape-optimized catenary structures, centimeter-scale devices can be designed in ten seconds, with the performance improved by ~15%.

Furthermore, this method has the ability to extend catenary-like continuous structures to arbitrary polarization, including both linear and elliptical polarizations, which is difficult to achieve with traditional design methods. It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.
Towards the performance limit of catenary meta-optics via field-driven optimization_1
Towards the performance limit of catenary meta-optics via field-driven optimization_2
Towards the performance limit of catenary meta-optics via field-driven optimization_3
Towards the performance limit of catenary meta-optics via field-driven optimization_4
  • Multi-wavelength nanowire micro-LEDs for future high speed optical communication
  • Ayush Pandey, Zetian Mi
  • Opto-Electronic Advances
  • 2024-03-20
  • Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
  • Dehai Liang, Saif M. H. Qaid, Xin Yang, Shuangyi Zhao, Binbin Luo, Wensi Cai, Qingkai Qian, Zhigang Zang
  • Opto-Electronic Advances
  • 2024-03-20
  • Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
  • Yuqiang Ding, Zhenyi Luo, Garimagai Borjigin, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2024-03-20
  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • Yinan Zhang, Yinggang Chen, Tong Wang, Qian Zhu, Min Gu
  • Opto-Electronic Advances
  • 2024-03-12
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips
  • Xiaohu Zhang, Qinmiao Chen, Dongliang Tang, Kaifeng Liu, Haimo Zhang, Lintong Shi, Mengyao He, Yongcai Guo, Shumin Xiao
  • Opto-Electronic Advances
  • 2024-01-31
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31



  • Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces                                Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips
    About
    |
    Contact
    |
    Copyright © PubCard