Year
Month
(Peer-Reviewed) Towards the performance limit of catenary meta-optics via field-driven optimization
Siran Chen ¹ ² ³, Yingli Ha 哈颖丽 ¹ ² ⁴, Fei Zhang 张飞 ¹ ², ⁴, Mingbo Pu 蒲明博 ¹ ² ³ ⁴, Hanlin Bao 包汉霖 ¹ ² ³, Mingfeng Xu 徐明峰 ¹ ² ⁴, Yinghui Guo 郭迎辉 ¹ ² ³ ⁴, Yue Shen ⁵, Xiaoliang Ma 马晓亮 ¹ ² ³, Xiong Li 李雄 ¹ ² ³, Xiangang Luo 罗先刚 ¹ ²
¹ National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院 光场调控科学技术全国重点实验室
² State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 微细加工光学技术国家重点实验室
³ College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学 材料科学与光电技术学院
⁴ Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所矢量光场研究中心
⁵ Department of Electrical and Computer Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095, USA
Opto-Electronic Advances, 2024-01-31
Abstract

Catenary optics enables metasurfaces with higher efficiency and wider bandwidth, and is highly anticipated in the imaging system, super-resolution lithography, and broadband absorbers. However, the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.

Here, perfect control of both local geometric and propagation phases is realized through field-driven optimization, in which the field distribution is calculated under real boundary conditions. Different from other optimization methods requiring a mass of iterations, the proposed design method requires less than ten iterations to get the efficiency close to the optimal value. Based on the library of shape-optimized catenary structures, centimeter-scale devices can be designed in ten seconds, with the performance improved by ~15%.

Furthermore, this method has the ability to extend catenary-like continuous structures to arbitrary polarization, including both linear and elliptical polarizations, which is difficult to achieve with traditional design methods. It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.
Towards the performance limit of catenary meta-optics via field-driven optimization_1
Towards the performance limit of catenary meta-optics via field-driven optimization_2
Towards the performance limit of catenary meta-optics via field-driven optimization_3
Towards the performance limit of catenary meta-optics via field-driven optimization_4
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
  • Xin Xu, Qin Luo, Jixiang Wang, Yahui Song, Hong Ye, Xin Zhang, Yi He, Minxuan Sun, Ruobing Zhang, Guohua Shi
  • Opto-Electronic Advances
  • 2024-06-11
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04



  • Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces                                Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips
    About
    |
    Contact
    |
    Copyright © PubCard