Year
Month
(Peer-Reviewed) Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
Tong Nan 南通 ¹ ², Huan Zhao 赵欢 ³, Jinying Guo 郭劲英 ⁴ ⁵, Xinke Wang 王新柯 ², Hao Tian 田浩 ¹, Yan Zhang 张岩 ²
¹ School of Physics, Harbin Institute of Technology, Harbin 150001, China
中国 哈尔滨 哈尔滨工业大学物理学院
² Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
中国 北京 首都师范大学物理系 北京成像技术高精尖创新中心 太赫兹光电子学教育部重点实验室 超材料与器件北京市重点实验室
³ Institute of Microelectronics Chinese Academy of Sciences, Beijing 100029, China
中国 北京 中国科学院微电子研究所
⁴ Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
中国 上海 中国科学院上海光学精密机械研究所
⁵ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学材料科学与光电技术学院
Opto-Electronic Science, 2024-05-28
Abstract

Conventionally, the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams' spatial transmission trajectory. In particular, along the optical axis, the polarization state is either constant or varies continuously in each output plane. Here, we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.

With tri-layer metallic metasurfaces, the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz (THz) wave. The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes. We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory. Continuous linear polarization changes and linear polarization to right circular polarization (RCP) and back to linear polarization changes are realized respectively.

The experimental results are basically consistent with the simulated results. Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission. This technique has potential uses in optical encryption, particle manipulation, and biomedical imaging.
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces_1
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces_2
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces_3
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces_4
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31



  • Photo-driven fin field-effect transistors                                Towards the performance limit of catenary meta-optics via field-driven optimization
    About
    |
    Contact
    |
    Copyright © PubCard