Year
Month
(Peer-Reviewed) Streamlined photonic reservoir computer with augmented memory capabilities
Changdi Zhou 周长笛 ¹ ², Yu Huang 黄于 ¹ ², Yigong Yang 杨一功 ¹ ², Deyu Cai 蔡德宇 ¹ ², Pei Zhou 周沛 ¹ ², Kuenyao Lau 刘坤耀 ¹ ², Nianqiang Li 李念强 ¹ ², Xiaofeng Li 李孝峰 ¹ ²
¹ School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
中国 苏州 苏州大学光电科学与工程学院 苏州纳米科技协同创新中心
² Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
中国 苏州 苏州大学 江苏省先进光学制造技术重点实验室 教育部现代光学技术重点实验室
Opto-Electronic Advances, 2024-10-22
Abstract

Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence, among which photonic time-delay reservoir computing (TDRC) is widely anticipated. While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing, the performance highly relies on the fading memory provided by the delay feedback loop (FL), which sets a restriction on the extensibility of physical implementation, especially for highly integrated chips.

Here, we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding (QC), which completely gets rid of the dependence on FL. Unlike delay-based TDRC, encoded data in QC-based RC (QRC) enables temporal feature extraction, facilitating augmented memory capabilities. Thus, our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL.

Furthermore, we can implement this hardware with a low-power, easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing. We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC, wherein the simpler-structured QRC outperforms across various benchmark tasks. Our results may underscore an auspicious solution for the hardware implementation of deep neural networks.
Streamlined photonic reservoir computer with augmented memory capabilities_1
Streamlined photonic reservoir computer with augmented memory capabilities_2
Streamlined photonic reservoir computer with augmented memory capabilities_3
Streamlined photonic reservoir computer with augmented memory capabilities_4
  • CW laser damage of ceramics induced by air filament
  • Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
  • Opto-Electronic Advances
  • 2025-06-27
  • Eco-friendly quantum-dot light-emitting diode display technologies: prospects and challenges
  • Gao Peili, Li Chan, Zhou Hao, He Songhua, Yin Zhen, Ng Kar Wei, Wang Shuangpeng
  • Opto-Electronic Science
  • 2025-06-25
  • Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
  • Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
  • Opto-Electronic Science
  • 2025-06-25
  • Observation of polaronic state assisted sub-bandgap saturable absorption
  • Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
  • Opto-Electronic Advances
  • 2025-06-19
  • Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem
  • Xiaoli Jing, Qiming Liao, Misheng Liang, Bo Wang, Junjie Li, Yongtian Wang, Rui You, Lingling Huang
  • Opto-Electronic Advances
  • 2025-06-19
  • Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
  • Yi Zheng, Hao-Ran Zhang, Xiao-Wei Li, You-Ran Zhao, Zhao-Song Li, Ye-Hao Hou, Chao Liu, Qiong-Hua Wang
  • Opto-Electronic Advances
  • 2025-06-19
  • Cascaded metasurfaces for adaptive aberration correction
  • Lei Zhang, Tie Jun Cui
  • Opto-Electronic Advances
  • 2025-05-27
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22



  • Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform                                Vortex-field enhancement through high-threshold geometric metasurface
    About
    |
    Contact
    |
    Copyright © PubCard