Year
Month
(Peer-Reviewed) Prediction of pandemic risk for animal-origin coronavirus using a deep learning method
Zheng Kou 寇铮 ¹, Yi-Fan Huang ¹, Ao Shen ¹, Saeed Kosari ¹, Xiang-Rong Liu 刘向荣 ², Xiao-Li Qiang 强小利 ¹
¹ Institute of Computing Science and Technology, Guangzhou University, Guangzhou, 510006, China
中国 广州 广州大学计算科技研究院
² Department of Computer Science, Xiamen University, Xiamen, 361005, China
中国 厦门 厦门大学计算机科学系
Background

Coronaviruses can be isolated from bats, civets, pangolins, birds and other wild animals. As an animal-origin pathogen, coronavirus can cross species barrier and cause pandemic in humans. In this study, a deep learning model for early prediction of pandemic risk was proposed based on the sequences of viral genomes.

Methods

A total of 3257 genomes were downloaded from the Coronavirus Genome Resource Library. We present a deep learning model of cross-species coronavirus infection that combines a bidirectional gated recurrent unit network with a one-dimensional convolution. The genome sequence of animal-origin coronavirus was directly input to extract features and predict pandemic risk. The best performances were explored with the use of pre-trained DNA vector and attention mechanism. The area under the receiver operating characteristic curve (AUROC) and the area under precision-recall curve (AUPR) were used to evaluate the predictive models.

Results

The six specific models achieved good performances for the corresponding virus groups (1 for AUROC and 1 for AUPR). The general model with pre-training vector and attention mechanism provided excellent predictions for all virus groups (1 for AUROC and 1 for AUPR) while those without pre-training vector or attention mechanism had obviously reduction of performance (about 5–25%). Re-training experiments showed that the general model has good capabilities of transfer learning (average for six groups: 0.968 for AUROC and 0.942 for AUPR) and should give reasonable prediction for potential pathogen of next pandemic. The artificial negative data with the replacement of the coding region of the spike protein were also predicted correctly (100% accuracy). With the application of the Python programming language, an easy-to-use tool was created to implements our predictor.

Conclusions

Robust deep learning model with pre-training vector and attention mechanism mastered the features from the whole genomes of animal-origin coronaviruses and could predict the risk of cross-species infection for early warning of next pandemic.
Prediction of pandemic risk for animal-origin coronavirus using a deep learning method_1
Prediction of pandemic risk for animal-origin coronavirus using a deep learning method_2
Prediction of pandemic risk for animal-origin coronavirus using a deep learning method_3
Prediction of pandemic risk for animal-origin coronavirus using a deep learning method_4
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17
  • Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
  • Saeed Bohlooli Darian, Jeongmin Oh, Bjorn Paulson, Minju Cho, Globinna Kim, Eunyoung Tak, Inki Kim, Chan-Gi Pack, Jung-Man Namgoong, In-Jeoung Baek, Jun Ki Kim
  • Opto-Electronic Advances
  • 2025-07-17
  • Research progress on generating perfect vortex beams based on metasurfaces
  • Xiujuan Liu, Manna Gu, Ying Tian, Mingfeng Zheng, Bo Fang, Zhi Hong, Chee Leong Tan, Xufeng Jing
  • Opto-Electronic Science
  • 2025-07-09
  • Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
  • Xin Li, Xinye Liao, Junxiang Zeng, Zao Yi, Xin He, Jiagui Wu, Huan Chen, Zhaojian Zhang, Yang Yu, Zhengfu Zhang, Sha Huang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-07-09
  • Spectro-polarimetric detection enabled by multidimensional metasurface with quasi-bound states in the continuum
  • Haoyang He, Fangxing Lai, Yan Zhang, Xue Zhang, Chenyi Tian, Xin Li, Yongtian Wang, Shumin Xiao, Lingling Huang
  • Opto-Electronic Advances
  • 2025-06-30
  • Emerging low-dimensional perovskite resistive switching memristors: from fundamentals to devices
  • Shuanglong Wang, Hong Lian, Haifeng Ling, Hao Wu, Tianxiao Xiao, Yijia Huang, Peter Müller-Buschbaum
  • Opto-Electronic Advances
  • 2025-06-27
  • CW laser damage of ceramics induced by air filament
  • Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
  • Opto-Electronic Advances
  • 2025-06-27



  • GLP-1 mimetics as a potential therapy for nonalcoholic steatohepatitis                                Epigenetic integrity of paternal imprints enhances the developmental potential of androgenetic haploid embryonic stem cells
    About
    |
    Contact
    |
    Copyright © PubCard