Year
Month
(Peer-Reviewed) Universal Adversarial Examples and Perturbations for Quantum Classifiers
Weiyuan Gong ¹, Dong-Ling Deng 邓东灵 ¹ ²
¹ Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China 清华大学 交叉信息研究院 量子信息中心
² Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai 200232, China 上海期智研究院
National Science Review, 2021-07-22
Abstract

Quantum machine learning explores the interplay between machine learning and quantum physics, which may lead to unprecedented perspectives for both fields. In fact, recent works have shown strong evidences that quantum computers could outperform classical computers in solving certain notable machine learning tasks. Yet, quantum learning systems may also suffer from the vulnerability problem: adding a tiny carefully-crafted perturbation to the legitimate input data would cause the systems to make incorrect predictions at a notably high confidence level.

In this paper, we study the universality of adversarial examples and perturbations for quantum classifiers. Through concrete examples involving classifications of real-life images and quantum phases of matter, we show that there exist universal adversarial examples that can fool a set of different quantum classifiers. We prove that for a set of k classifiers with each receiving input data of n qubits, an O(ln k/2ⁿ) increase of the perturbation strength is enough to ensure a moderate universal adversarial risk.

In addition, for a given quantum classifier we show that there exist universal adversarial perturbations, which can be added to different legitimate samples and make them to be adversarial examples for the classifier.

Our results reveal the universality perspective of adversarial attacks for quantum machine learning systems, which would be crucial for practical applications of both near-term and future quantum technologies in solving machine learning problems.
Universal Adversarial Examples and Perturbations for Quantum Classifiers_1
Universal Adversarial Examples and Perturbations for Quantum Classifiers_2
Universal Adversarial Examples and Perturbations for Quantum Classifiers_3
Universal Adversarial Examples and Perturbations for Quantum Classifiers_4
  • Multi-wavelength nanowire micro-LEDs for future high speed optical communication
  • Ayush Pandey, Zetian Mi
  • Opto-Electronic Advances
  • 2024-03-20
  • Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
  • Dehai Liang, Saif M. H. Qaid, Xin Yang, Shuangyi Zhao, Binbin Luo, Wensi Cai, Qingkai Qian, Zhigang Zang
  • Opto-Electronic Advances
  • 2024-03-20
  • Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
  • Yuqiang Ding, Zhenyi Luo, Garimagai Borjigin, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2024-03-20
  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • Yinan Zhang, Yinggang Chen, Tong Wang, Qian Zhu, Min Gu
  • Opto-Electronic Advances
  • 2024-03-12
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Towards the performance limit of catenary meta-optics via field-driven optimization
  • Siran Chen, Yingli Ha, Fei Zhang, Mingbo Pu, Hanlin Bao, Mingfeng Xu, Yinghui Guo, Yue Shen, Xiaoliang Ma, Xiong Li, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-01-31
  • Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips
  • Xiaohu Zhang, Qinmiao Chen, Dongliang Tang, Kaifeng Liu, Haimo Zhang, Lintong Shi, Mengyao He, Yongcai Guo, Shumin Xiao
  • Opto-Electronic Advances
  • 2024-01-31



  • Non-spreading bessel spatiotemporal optical vortices                                A new finding on the prevalence of rapid water warming during lake ice melting on the Tibetan Plateau
    About
    |
    Contact
    |
    Copyright © PubCard