(Peer-Reviewed) First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu 舒晓琴 ¹, Xin-Lu Cheng 程新路 ², Tong Liu 刘彤 ³, Hong Zhang 张红 ²
¹ College of Mathematics and Physics, Leshan Normal College, Leshan 614000, China
中国 乐川 乐山师范学院数理学院
² College of Physics, Sichuan University, Chengdu 610065, China
中国 成都 四川大学物理学院
³ School of Science, Xihua University, Chengdu 610065, China
中国 成都 西华大学理学院
Chinese Physics B, 2021-02-24
Abstract
The operating frequencies of surface plasmons in pristine graphene lie in the terahertz and infrared spectral range, which limits their utilization. Here, the high-frequency plasmons in doped graphene nanostructures are studied by the time-dependent density functional theory. The doping atoms include boron, nitrogen, aluminum, silicon, phosphorus, and sulfur atoms.
The influences of the position and concentration of nitrogen dopants on the collective stimulation are investigated, and the effects of different types of doping atoms on the plasmonic stimulation are discussed. For different positions of nitrogen dopants, it is found that a higher degree of symmetry destruction is correlated with weaker optical absorption. In contrast, a higher concentration of nitrogen dopants is not correlated with a stronger absorption. Regarding different doping atoms, atoms similar to carbon atom in size, such as boron atom and nitrogen atom, result in less spectral attenuation.
In systems with other doping atoms, the absorption is significantly weakened compared with the absorption of the pristine graphene nanostructure. Plasmon energy resonance dots of doped graphene lie in the visible and ultraviolet spectral range. The doped graphene nanostructure presents a promising material for nanoscaled plasmonic devices with effective absorption in the visible and ultraviolet range.
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
Opto-Electronic Science
2025-06-25
Observation of polaronic state assisted sub-bandgap saturable absorption
Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
Opto-Electronic Advances
2025-06-19
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22