(Peer-Reviewed) Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
Yiming Wang 王一茗 ¹, Fei Fan 范飞 ¹ ², Huijun Zhao 赵慧君 ¹, Yunyun Ji 冀允允 ², Jing Liu 刘静 ¹, Shengjiang Chang 常胜江 ²
¹ Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
中国 天津 南开大学现代光学研究所 天津市微尺度光学信息技术科学重点实验室
² Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
中国 天津 天津市光电传感器与传感网络技术重点实验室
Opto-Electronic Advances
, 2025-03-06
Abstract
Vortex beams carrying orbital angular momentum (OAM) are of great significance for high-capacity communication and super-resolution imaging. However, there is a huge gap between the free-space vortices (FVs) and plasmonic vortices (PVs) on chips, and active manipulation as well as multiplexing in more channels have become a pressing demand.
In this work, we demonstrate a terahertz (THz) cascaded metadevice composed of a helical plasmonic metasurface, a liquid crystal (LC) layer, and a helical dielectric metasurface. By spin-orbital angular momentum coupling and photon state superposition, PVs and FVs are generated with mode purity of over 85% on average. Due to the inversion asymmetric design of the helical metasurfaces, the parity symmetry breaking of OAM is realized (the topological charge numbers no longer occur in positive and negative pairs, but all are positive), generating 6 independent channels associated with the decoupled spin states and the near-/far- field positions.
Moreover, by the LC integration, dynamic mode switching and energy distribution can be realized, finally obtaining up to 12 modes with a modulation ratio of above 70%. This active tuning and multi-channel multiplexing metadevice establishes a bridge connection between the PVs and FVs, exhibiting promising applications in THz communication, intelligent perception, and information processing.
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
Opto-Electronic Science
2025-04-25