Year
Month
(Peer-Reviewed) All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte
Yu Zhang ¹, Jie Xua ¹, Zhi Li ¹, Yanrong Wang ¹, Sijia Wang ², Xiaoli Dong 董晓丽 ¹, Yonggang Wang 王永刚 ¹
¹ Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
中国 上海复旦大学化学系、上海市分子催化和功能材料重点实验室、复旦大学新能源研究院、能源材料化学协同创新中心
² College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
中国 郑州 河南中医药大学药学院
Science Bulletin, 2021-08-17
Abstract

Aqueous Na-ion batteries have been extensively studied for large-scale energy storage systems. However, their wide application is still limited by their inferior cycle stability (< 3000 cycles) and poor temperature tolerance. Furthermore, many of the reported high rate behaviors are achieved at a low mass loading (<3 mg cm−2) of the electrodes. Herein, we propose an aqueous Na-ion battery which includes a Ni-based Prussian blue (NiHCF) cathode, a carbonyl-based organic compound, 5,7,12,14-pentacenetetrone (PT) anode and a “water-in-salt” electrolyte (17 mol kg−1 NaClO4 in water).

Its operation involves the reversible coordination reaction of the PT anode and the extraction/insertion of Na+ in the NiHCF cathode. It is demonstrated that the wide internal spaces of the PT anode and NiHCF cathode can not only buffer the volumetric change induced by Na+ storage, but also enable fast kinetics.

The full cell exhibits a supercapacitor-like rate performance of 50 A g−1 (corresponding to a discharge or charge within 6.3 s) and a super-long lifespan of 15,000 cycles. Moreover, the excellent rate performance can still be preserved even with a high mass loading of the electrodes (15 mgNiHCF cm−2 and 8 mgPT cm−2). Especially, the cell can work well in a wide temperature range, from −40 to 100 °C, showing a typical all-climate operation.
All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte_1
All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte_2
All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte_3
All-climate aqueous Na-ion batteries using “Water-in-Salt” electrolyte_4
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
  • Xin Xu, Qin Luo, Jixiang Wang, Yahui Song, Hong Ye, Xin Zhang, Yi He, Minxuan Sun, Ruobing Zhang, Guohua Shi
  • Opto-Electronic Advances
  • 2024-06-11
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04



  • Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder                                Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells
    About
    |
    Contact
    |
    Copyright © PubCard