(Peer-Reviewed) Local renin angiotensin system and sperm DNA fragmentation
María Victoria Aparicio Prieto ¹, María Victoria Rodríguez Gallego ², Asier Valdivia Palacín ³, Yosu Franco Iriarte ⁴, Gotzone Hervás Barbara ³, Enrique Echevarría Orella ³, Luis Casis Saenz ³
¹ Human Reproduction Unit, Cruces University Hospital, Barakaldo 48903, Spain
² Human Reproduction Unit, San Pedro Hospital, Logroño 26006, Spain
³ Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
⁴ Human Reproduction Unit, Ruber International Hospital, Madrid 28034, Spain
Asian Journal of Andrology, 2021-09-07
Abstract
The renin angiotensin system (RAS) appears to influence male fertility at multiple levels. In this work, we analyzed the relationship between the RAS and DNA integrity. Fifty male volunteers were divided into two groups (25 each): control (DNA fragmentation ≤20%) and pathological (DNA fragmentation >20%) cases.
Activities of five peptidases controlling RAS were measured fluorometrically: prolyl endopeptidase (which converts angiotensin [A] I and A II to A 1–7), neutral endopeptidase (NEP/CD10: A I to A 1–7), aminopeptidase N (APN/CD13: A III to A IV), aminopeptidase A (A II to A III) and aminopeptidase B (A III to A IV). Angiotensin-converting enzyme (A I to A II), APN/CD13 and NEP/CD10 were also assessed by semiquantitative cytometry and quantitative flow cytometry assays, as were the receptors of all RAS components: A II receptor type 1 (AT1R), A II receptor type 2 (AT2R), A IV receptor (AT4R or insulin-regulated aminopeptidase [IRAP]), (pro)renin receptor (PRR) and A 1–7 receptor or Mas receptor (MasR) None of the enzymes that regulate levels of RAS components, except for APN/CD13 (decrease in fragmented cells), showed significant differences between both groups.
Micrographs of RAS receptors revealed no significant differences in immunolabeling patterns between normozoospermic and fragmented cells. Labeling of AT1R (94.3% normozoospermic vs 84.1% fragmented), AT4R (96.2% vs 95.3%) and MasR (97.4% vs 87.2%) was similar between the groups. AT2R (87.4% normozoospermic vs 63.1% fragmented) and PRR (96.4% vs 48.2%) were higher in non-fragmented spermatozoa. These findings suggest that fragmented DNA spermatozoa have a lower capacity to respond to bioactive RAS peptides.
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
Opto-Electronic Science
2025-06-25
Observation of polaronic state assisted sub-bandgap saturable absorption
Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
Opto-Electronic Advances
2025-06-19
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22