Year
Month
(Peer-Reviewed) Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response
Mingrui Shao 邵明瑞 ¹, Chang Ji 纪昌 ¹, Jibing Tan 谭吉兵 ¹, Baoqiang Du 杜宝强 ¹, Xiaofei Zhao 赵晓菲 ¹, Jing Yu 郁菁 ¹, Baoyuan Man 满宝元 ¹, Kaichen Xu 徐凯臣 ², Chao Zhang 张超 ¹, Zhen Li 李振 ¹
¹ Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
中国 济南 山东师范大学物理与电子科学学院 材料与清洁能源研究院
² State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China
中国 杭州 浙江大学机械工程学院 流体动力与机电系统国家重点实验室
Opto-Electronic Advances, 2023-11-15
Abstract

Surface-enhanced Raman scattering (SERS) substrates based on chemical mechanism (CM) have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability, uniform molecular adsorption and controllable molecular orientation. However, it remains huge challenges to achieve the optimal SERS signal for diverse molecules with different band structures on the same substrate.

Herein, we demonstrate a graphene oxide (GO) energy band regulation strategy through ferroelectric polarization to facilitate the charge transfer process for improving SERS activity. The Fermi level (Ef) of GO can be flexibly manipulated by adjusting the ferroelectric polarization direction or the temperature of the ferroelectric substrate. Experimentally, kelvin probe force microscopy (KPFM) is employed to quantitatively analyze theEf of GO.

Theoretically, the density functional theory calculations are also performed to verify the proposed modulation mechanism. Consequently, the SERS response of probe molecules with different band structures (R6G, CV, MB, PNTP) can be improved through polarization direction or temperature changes without the necessity to redesign the SERS substrate.

This work provides a novel insight into the SERS substrate design based on CM and is expected to be applied to other two-dimensional materials.
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response_1
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response_2
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response_3
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response_4
  • All-optical object identification and three-dimensional reconstruction based on optical computing metasurface
  • Dingyu Xu, Wenhao Xu, Qiang Yang, Wenshuai Zhang, Shuangchun Wen, Hailu Luo,
  • Opto-Electronic Advances
  • 2023-12-12
  • Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays
  • Shouqiang Lai, Shibiao Liu, Zilu Li, Zhening Zhang, Zhong Chen, Rong Zhang, Hao-Chung Kuo, Tingzhu Wu
  • Opto-Electronic Science
  • 2023-12-06
  • Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film
  • Igor S. Balashov, Alexander A. Chezhegov, Artem S. Chizhov, Andrey A. Grunin, Konstantin V. Anokhin, Andrey A. Fedyanin
  • Opto-Electronic Science
  • 2023-12-06
  • Integrated photonic convolution acceleration core for wearable devices
  • Baiheng Zhao, Junwei Cheng, Bo Wu, Dingshan Gao, Hailong Zhou, Jianji Dong
  • Opto-Electronic Science
  • 2023-11-28
  • Optical trapping of optical nanoparticles: Fundamentals and applications
  • Fengchan Zhang, Pablo Camarero, Patricia Haro-González, Lucía Labrador-Páez, Daniel Jaque
  • Opto-Electronic Science
  • 2023-11-15
  • Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip
  • Yanan Han, Shuiying Xiang, Ziwei Song, Shuang Gao, Xingxing Guo, Yahui Zhang, Yuechun Shi, Xiangfei Chen, Yue Hao
  • Opto-Electronic Science
  • 2023-11-15
  • Photonic integrated neuro-synaptic core for convolutional spiking neural network
  • Shuiying Xiang, Yuechun Shi, Yahui Zhang, Xingxing Guo, Ling Zheng, Yanan Han, Yuna Zhang, Ziwei Song, Dianzhuang Zheng, Tao Zhang, Hailing Wang, Xiaojun Zhu, Xiangfei Chen, Min Qiu, Yichen Shen, Wanhua Zheng, Yue Hao
  • Opto-Electronic Advances
  • 2023-11-15
  • Paper-based WS₂ photodetectors fabricated by all-dry techniques
  • Francesco Pieri, Gianluca Fiori
  • Opto-Electronic Advances
  • 2023-11-15
  • Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group
  • Hengtian Zhu, Junxian Luo, Qing Dai, Shugeng Zhu, Huan Yang, Kanghu Zhou, Liuwei Zhan, Biao Xu, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2023-11-15
  • Physics-data-driven intelligent optimization for large-aperture metalenses
  • Yingli Ha, Yu Luo, Mingbo Pu, Fei Zhang, Qiong He, Jinjin Jin, Mingfeng Xu, Yinghui Guo, Xiaogang Li, Xiong Li, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2023-11-15
  • Metasurfaces for near-eye display applications
  • Yan Li, Xiaojin Huang, Shuxin Liu, Haowen Liang, Yuye Ling1, Yikai Su
  • Opto-Electronic Science
  • 2023-10-31
  • A review of liquid crystal spatial light modulators: devices and applications
  • Yiqian Yang, Andrew Forbes, Liangcai Cao
  • Opto-Electronic Science
  • 2023-10-31



  • Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip                                Photonic integrated neuro-synaptic core for convolutional spiking neural network
    About
    |
    Contact
    |
    Copyright © PubCard