Year
Month
(Preprint) Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine
Yingxin Zhou ¹ ², Jiasheng Zu ¹ ², Jing Liu 刘静 ¹ ² ³
¹ Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
中国 北京 中国科学院理化技术研究所
² School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学未来技术学院
³ Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
中国 北京 清华大学医学院生物医学工程系
ChinaXiv, 2021-09-27
Abstract

Magnetism and magnetic monopole are classical issues in physics. Conventional magnets are generally composed of rigid materials which may face challenges in extreme situations. Here, from an alternative other than rigid magnet, we proposed for the first time to generate fluidic endogenous magnetism and construct magnetic monopole through tuning liquid metal machine. Based on theoretical interpretation and conceptual experimental evidences, we illustrated that when gallium base liquid metal in solution rotates under electrical actuation, it forms an endogenous magnetic field inside which well explains the phenomenon that two such discrete metal droplets could easily fuse together, indicating their reciprocal attraction via N and S poles.

Further, we clarified that the self-fueled liquid metal motor also runs as an endogenous fluidic magnet owning electromagnetic homology. When liquid gallium in solution swallowed aluminum inside, it formed a spin motor and dynamically variable charge distribution which produced endogenous magnetism inside. This explains the phenomena that there often happened reflection collision and attraction fusion between running liquid metal motors which were just caused by the dynamic adjustment of their N and S polarities, respectively.

Finally, we conceived that such endogenous magnet could lead to magnetic monopole and four technical routes to realize this object were thus suggested as: 1. Matching interior flow of liquid metal machines; 2. Superposition between external electric effect and magnetic field; 3. Composite construction between magnetic particles and liquid metal motor; 4. Chemical ways such as via galvanic cell reaction. Overall, the present theory and revealed experimental evidences disclosed the role of liquid metal machine as a fluidic endogenous magnet and pointed out some promising ways to realize magnetic monopole. A group of unconventional magnetoelectric devices and applications can be possible in the near future.
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine_1
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine_2
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine_3
Fluidic Endogenous Magnetism and Magnetic Monopole Clues from Liquid Metal Droplet Machine_4
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22



  • First mixopterid eurypterids (Arthropoda: Chelicerata) from the Lower Silurian of South China                                Hepatorenal syndrome in acute-on-chronic liver failure with acute kidney injury: more questions requiring discussion
    About
    |
    Contact
    |
    Copyright © PubCard