(Preprint) GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network
Ryan Razani, Ran Cheng 程冉, Enxu Li, Ehsan Taghavi, Yuan Ren, Liu Bingbing
Huawei Noah’s Ark Lab, Toronto, Canada
arXiv, 2021-08-18

Panoptic segmentation as an integrated task of both static environmental understanding and dynamic object identification, has recently begun to receive broad research interest. In this paper, we propose a new computationally efficient LiDAR based panoptic segmentation framework, called GP-S3Net.

GP-S3Net is a proposal-free approach in which no object proposals are needed to identify the objects in contrast to conventional two-stage panoptic systems, where a detection network is incorporated for capturing instance information. Our new design consists of a novel instance-level network to process the semantic results by constructing a graph convolutional network to identify objects (foreground), which later on are fused with the background classes. Through the fine-grained clusters of the foreground objects from the semantic segmentation backbone, over-segmentation priors are generated and subsequently processed by 3D sparse convolution to embed each cluster. Each cluster is treated as a node in the graph and its corresponding embedding is used as its node feature. Then a GCNN predicts whether edges exist between each cluster pair.

We utilize the instance label to generate ground truth edge labels for each constructed graph in order to supervise the learning. Extensive experiments demonstrate that GP-S3Net outperforms the current state-of-the-art approaches, by a significant margin across available datasets such as, nuScenes and SemanticPOSS, ranking first on the competitive public SemanticKITTI leaderboard upon publication.
GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network_1
GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network_2
GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network_3
GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network_4
  • Power grid fault diagnosis based on a deep pyramid convolutional neural network
  • Xu Zhang 张旭, Huiting Zhang, Dongying Zhang, Yixian Wang, Ruiting Ding, Yuchuan Zheng, Yongxu Zhang
  • CSEE Journal of Power and Energy Systems
  • 2022-05-06
  • China's factor reallocation effect considering energy
  • Guangqing Xu, Xiaoyu Chen
  • Chinese Journal of Population, Resources and Environment
  • 2022-05-02
  • Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation
  • Ming Hou, Suji Wang, Dandan Yu, Xinyi Lu, Xiansen Zhao, Zhangpeng Chen, Chao Yan
  • Frontiers of Medicine
  • 2022-04-26
  • Cultivation of gut microorganisms of the marine ascidian Halocynthia roretzi reveals their potential roles in the environmental adaptation of their host
  • Yang Yang, Yuting Zhu, Haiming Liu, Jiankai Wei, Haiyan Yu, Bo Dong
  • Marine Life Science & Technology
  • 2022-04-26
  • Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements
  • Jinsong Li, Hao Liu, Wenzhuo Li, Tianshu Bi, Mingyang Zhao
  • Global Energy Interconnection
  • 2022-04-25
  • Field distribution of the Z₂ topological edge state revealed by cathodoluminescence nanoscopy
  • Xiao He, Donglin Liu, Hongfei Wang, Liheng Zheng, Bo Xu, Biye Xie, Meiling Jiang, Zhixin Liu, Jin Zhang, Minghui Lu, Zheyu Fang
  • Opto-Electronic Advances
  • 2022-04-25
  • Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications
  • Alexey Wolf, Alexander Dostovalov, Kirill Bronnikov, Mikhail Skvortsov, Stefan Wabnitz, Sergey Babin
  • Opto-Electronic Advances
  • 2022-04-25
  • Graphene-empowered dynamic metasurfaces and metadevices
  • Chao Zeng, Hua Lu, Dong Mao, Yueqing Du, He Hua, Wei Zhao, Jianlin Zhao
  • Opto-Electronic Advances
  • 2022-04-25
  • Charge carrier dynamics in different crystal phases of CH₃NH₃PbI₃ perovskite
  • Efthymis Serpetzoglou, Ioannis Konidakis, George Kourmoulakis, Ioanna Demeridou, Konstantinos Chatzimanolis, Christos Zervos, George Kioseoglou, Emmanuel Kymakis, Emmanuel Stratakis
  • Opto-Electronic Science
  • 2022-04-21
  • Applications of optically and electrically driven nanoscale bowtie antennas
  • Zhongjun Jiang, Yingjian Liu, Liang Wang
  • Opto-Electronic Science
  • 2022-04-20
  • Validation of the bodily expressive action stimulus test among Chinese adults and children
  • Yunmei Yang, Wenwen Hou, Jing Li
  • PsyCh Journal
  • 2022-04-17

  • Deep Snapshot Hdr Reconstruction Based On The Polarization Camera                                Blind Estimation of Sparse Simo Channels: Quadratic Vs. Linear Constraints
    Copyright © PubCard