Year
Month
(Peer-Reviewed) Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
Deer Su 苏德尔 ¹, Xiangyu Li 李翔宇 ², Weida Gao 高伟达 ³, Qiuhua Wei 韦秋华 ⁴, Haoyu Li 李浩宇 ¹, Changliang Guo 郭长亮 ⁵ ⁶, Weisong Zhao 赵唯淞 ¹
¹ Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
中国 哈尔滨 哈尔滨工业大学仪器科学与工程学院 先进光电成像技术研究室
² Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150081, China
中国 哈尔滨 哈尔滨工业大学控制科学与工程系
³ Department of neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
中国 哈尔滨 哈尔滨医科大学附属第二医院神经外科
⁴ Institute of Optical Measurement and Intellectualization, Harbin Institute of Technology, Harbin 150080, China
中国 哈尔滨 哈尔滨工业大学 光电测控与智能化研究所
⁵ Beijing Institute of Collaborative Innovation, Beijing 100094, China
中国 北京 北京协同创新研究院
⁶ State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing 100871, China
中国 北京 北京大学未来技术学院 分子医学研究所 国家生物医学成像科学中心 代谢及心血管分子医学北京市重点实验室 膜生物学国家重点实验室
Opto-Electronic Science, 2023-12-28
Abstract

A critical function of flow cytometry is to count the concentration of blood cells, which helps in the diagnosis of certain diseases. However, the bulky nature of commercial flow cytometers makes such tests only available in hospitals or laboratories, hindering the spread of point-of-care testing (POCT), especially in underdeveloped areas.

Here, we propose a smart Palm-size Optofluidic Hematology Analyzer based on a miniature fluorescence microscope and a microfluidic platform to lighten the device to improve its portability. This gadget has a dimension of 35 × 30 × 80 mm and a mass of 39 g, less than 5% of the weight of commercially available flow cytometers.

Additionally, automatic leukocyte concentration detection has been realized through the integration of image processing and leukocyte counting algorithms. We compared the leukocyte concentration measurement between our approach and a hemocytometer using the Passing-Bablok analysis and achieved a correlation coefficient of 0.979. Through Bland-Altman analysis, we obtained the relationship between their differences and mean measurement values and established 95% limits of agreement, ranging from −0.93×10³ to 0.94×10³ cells/μL.

We anticipate that this device can be used widely for monitoring and treating diseases such as HIV and tumors beyond hospitals.
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection_1
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection_2
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection_3
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection_4
  • Photo-driven fin field-effect transistors
  • Jintao Fu, Chongqian Leng, Rui Ma, Changbin Nie, Feiying Sun, Genglin Li, Xingzhan Wei
  • Opto-Electronic Science
  • 2024-05-28
  • Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
  • Tong Nan, Huan Zhao, Jinying Guo, Xinke Wang, Hao Tian, Yan Zhang
  • Opto-Electronic Science
  • 2024-05-28
  • Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
  • Ji Tong Wang, Pavel Tonkaev, Kirill Koshelev, Fangxing Lai, Sergey Kruk, Qinghai Song, Yuri Kivshar, Nicolae C. Panoiu
  • Opto-Electronic Advances
  • 2024-05-15
  • Liquid crystal-integrated metasurfaces for an active photonic platform
  • Dohyun Kang, Hyeonsu Heo, Younghwan Yang, Junhwa Seong, Hongyoon Kim, Joohoon Kim, Junsuk Rho
  • Opto-Electronic Advances
  • 2024-04-25
  • Fast source mask co-optimization method for high-NA EUV lithography
  • Ziqi Li, Lisong Dong, Xu Ma, Yayi Wei
  • Opto-Electronic Advances
  • 2024-04-25
  • Polariton lasing in Mie-resonant perovskite nanocavity
  • Mikhail A. Masharin, Daria Khmelevskaia, Valeriy I. Kondratiev, Daria I. Markina, Anton D. Utyushev, Dmitriy M. Dolgintsev, Alexey D. Dmitriev, Vanik A. Shahnazaryan, Anatoly P. Pushkarev, Furkan Isik, Ivan V. Iorsh, Ivan A. Shelykh, Hilmi V. Demir, Anton K. Samusev, Sergey V. Makarov
  • Opto-Electronic Advances
  • 2024-04-25
  • High-Q resonant Terahertz metasurfaces
  • Manukumara Manjappa, Yuri Kivshar
  • Opto-Electronic Advances
  • 2024-04-25
  • Efficient stochastic parallel gradient descent training for on-chip optical processor
  • Yuanjian Wan, Xudong Liu, Guangze Wu, Min Yang, Guofeng Yan, Yu Zhang, Jian Wang
  • Opto-Electronic Advances
  • 2024-04-25
  • High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
  • Haizhou Huang, Huaixi Chen, Huagang Liu, Zhi Zhang, Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang, Wenxiong Lin
  • Opto-Electronic Science
  • 2024-04-24
  • Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
  • Jiao Jiao Liu, Xinxin Yang, Qiulei Xu, Ruiguang Chang, Zhenghui Wu, Huaibin Shen
  • Opto-Electronic Science
  • 2024-04-24
  • Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
  • Ruozhong Han, Yuchan Zhang, Qilin Jiang, Long Chen, Kaiqiang Cao, Shian Zhang, Donghai Feng, Zhenrong Sun, Tianqing Jia
  • Opto-Electronic Science
  • 2024-03-22
  • Optical scanning endoscope via a single multimode optical fiber
  • Guangxing Wu, Runze Zhu, Yanqing Lu, Minghui Hong, Fei Xu
  • Opto-Electronic Science
  • 2024-03-22



  • Physics-informed deep learning for fringe pattern analysis                                Integrated photonic convolution acceleration core for wearable devices
    About
    |
    Contact
    |
    Copyright © PubCard