Year
Month
(Peer-Reviewed) Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
Deer Su 苏德尔 ¹, Xiangyu Li 李翔宇 ², Weida Gao 高伟达 ³, Qiuhua Wei 韦秋华 ⁴, Haoyu Li 李浩宇 ¹, Changliang Guo 郭长亮 ⁵ ⁶, Weisong Zhao 赵唯淞 ¹
¹ Innovation Photonics and Imaging Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
中国 哈尔滨 哈尔滨工业大学仪器科学与工程学院 先进光电成像技术研究室
² Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150081, China
中国 哈尔滨 哈尔滨工业大学控制科学与工程系
³ Department of neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
中国 哈尔滨 哈尔滨医科大学附属第二医院神经外科
⁴ Institute of Optical Measurement and Intellectualization, Harbin Institute of Technology, Harbin 150080, China
中国 哈尔滨 哈尔滨工业大学 光电测控与智能化研究所
⁵ Beijing Institute of Collaborative Innovation, Beijing 100094, China
中国 北京 北京协同创新研究院
⁶ State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing 100871, China
中国 北京 北京大学未来技术学院 分子医学研究所 国家生物医学成像科学中心 代谢及心血管分子医学北京市重点实验室 膜生物学国家重点实验室
Opto-Electronic Science, 2023-12-28
Abstract

A critical function of flow cytometry is to count the concentration of blood cells, which helps in the diagnosis of certain diseases. However, the bulky nature of commercial flow cytometers makes such tests only available in hospitals or laboratories, hindering the spread of point-of-care testing (POCT), especially in underdeveloped areas.

Here, we propose a smart Palm-size Optofluidic Hematology Analyzer based on a miniature fluorescence microscope and a microfluidic platform to lighten the device to improve its portability. This gadget has a dimension of 35 × 30 × 80 mm and a mass of 39 g, less than 5% of the weight of commercially available flow cytometers.

Additionally, automatic leukocyte concentration detection has been realized through the integration of image processing and leukocyte counting algorithms. We compared the leukocyte concentration measurement between our approach and a hemocytometer using the Passing-Bablok analysis and achieved a correlation coefficient of 0.979. Through Bland-Altman analysis, we obtained the relationship between their differences and mean measurement values and established 95% limits of agreement, ranging from −0.93×10³ to 0.94×10³ cells/μL.

We anticipate that this device can be used widely for monitoring and treating diseases such as HIV and tumors beyond hospitals.
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection_1
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection_2
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection_3
Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection_4
  • Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays
  • Shouqiang Lai, Shibiao Liu, Zilu Li, Zhening Zhang, Zhong Chen, Rong Zhang, Hao-Chung Kuo, Tingzhu Wu
  • Opto-Electronic Science
  • 2023-12-06
  • Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film
  • Igor S. Balashov, Alexander A. Chezhegov, Artem S. Chizhov, Andrey A. Grunin, Konstantin V. Anokhin, Andrey A. Fedyanin
  • Opto-Electronic Science
  • 2023-12-06
  • Integrated photonic convolution acceleration core for wearable devices
  • Baiheng Zhao, Junwei Cheng, Bo Wu, Dingshan Gao, Hailong Zhou, Jianji Dong
  • Opto-Electronic Science
  • 2023-11-28
  • Optical trapping of optical nanoparticles: Fundamentals and applications
  • Fengchan Zhang, Pablo Camarero, Patricia Haro-González, Lucía Labrador-Páez, Daniel Jaque
  • Opto-Electronic Science
  • 2023-11-15
  • Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip
  • Yanan Han, Shuiying Xiang, Ziwei Song, Shuang Gao, Xingxing Guo, Yahui Zhang, Yuechun Shi, Xiangfei Chen, Yue Hao
  • Opto-Electronic Science
  • 2023-11-15
  • Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response
  • Mingrui Shao, Chang Ji, Jibing Tan, Baoqiang Du, Xiaofei Zhao, Jing Yu, Baoyuan Man, Kaichen Xu, Chao Zhang, Zhen Li
  • Opto-Electronic Advances
  • 2023-11-15
  • Photonic integrated neuro-synaptic core for convolutional spiking neural network
  • Shuiying Xiang, Yuechun Shi, Yahui Zhang, Xingxing Guo, Ling Zheng, Yanan Han, Yuna Zhang, Ziwei Song, Dianzhuang Zheng, Tao Zhang, Hailing Wang, Xiaojun Zhu, Xiangfei Chen, Min Qiu, Yichen Shen, Wanhua Zheng, Yue Hao
  • Opto-Electronic Advances
  • 2023-11-15
  • Paper-based WS₂ photodetectors fabricated by all-dry techniques
  • Francesco Pieri, Gianluca Fiori
  • Opto-Electronic Advances
  • 2023-11-15
  • Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group
  • Hengtian Zhu, Junxian Luo, Qing Dai, Shugeng Zhu, Huan Yang, Kanghu Zhou, Liuwei Zhan, Biao Xu, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2023-11-15
  • Physics-data-driven intelligent optimization for large-aperture metalenses
  • Yingli Ha, Yu Luo, Mingbo Pu, Fei Zhang, Qiong He, Jinjin Jin, Mingfeng Xu, Yinghui Guo, Xiaogang Li, Xiong Li, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2023-11-15
  • Metasurfaces for near-eye display applications
  • Yan Li, Xiaojin Huang, Shuxin Liu, Haowen Liang, Yuye Ling1, Yikai Su
  • Opto-Electronic Science
  • 2023-10-31
  • A review of liquid crystal spatial light modulators: devices and applications
  • Yiqian Yang, Andrew Forbes, Liangcai Cao
  • Opto-Electronic Science
  • 2023-10-31



  • Physics-informed deep learning for fringe pattern analysis                                Integrated photonic convolution acceleration core for wearable devices
    About
    |
    Contact
    |
    Copyright © PubCard