Year
Month
(Peer-Reviewed) Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers
Jung-Hong Min ¹, Kwangjae Lee ², Tae-Hoon Chung ³, Jung-Wook Min ¹, Kuang-Hui Li ¹, Chun Hong Kang ¹, Hoe-Min Kwak ⁴, Tae-Hyeon Kim ⁵, Youyou Yuan ⁶, Kyoung-Kook Kim ⁵, Dong-Seon Lee ⁴, Tien Khee Ng ¹, Boon S. Ooi ¹
¹ Photonics Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
² Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
³ Light Source Research Division, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea
⁴ School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
⁵ Department of Advanced Convergence Technology, Research Institute of Advanced Convergence Technology, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si 15073, Republic of Korea
⁶ King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
Opto-Electronic Science, 2022-10-28
Abstract

Epitaxially grown III-nitride alloys are tightly bonded materials with mixed covalent-ionic bonds. This tight bonding presents tremendous challenges in developing III-nitride membranes, even though semiconductor membranes can provide numerous advantages by removing thick, inflexible, and costly substrates. Herein, cavities with various sizes were introduced by overgrowing target layers, such as undoped GaN and green LEDs, on nanoporous templates prepared by electrochemical etching of n-type GaN.

The large primary interfacial toughness was effectively reduced according to the design of the cavity density, and the overgrown target layers were then conveniently exfoliated by engineering tensile-stressed Ni layers. The resulting III-nitride membranes maintained high crystal quality even after exfoliation due to the use of GaN-based nanoporous templates with the same lattice constant. The microcavity-assisted crack propagation process developed for the current III-nitride membranes forms a universal process for developing various kinds of large-scale and high-quality semiconductor membranes.
Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers_1
Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers_2
Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers_3
  • Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges
  • Feirong Huang, Shuting Fan, Yuqi Tian, Xinghao Qu, Xiyang Li, Maofan Qin, Javid Muhammad, Xuefeng Zhang, Zhidong Zhang, Xinglong Dong
  • Journal of Materiomics
  • 2022-11-06
  • Towards integrated mode-division demultiplexing spectrometer by deep learning
  • Ze-huan Zheng, Sheng-ke Zhu, Ying Chen, Huanyang Chen, Jin-hui Chen
  • Opto-Electronic Science
  • 2022-11-01
  • Discovery of novel aspartate derivatives as highly potent and selective FXIa inhibitors
  • Ling Zhang, Wei Chen, Ningning Yao, Shuzeng Hou, Zhiwei Meng, Yi Kong, Chenzhong Liao, Zhouling Xie
  • Journal of Chinese Pharmaceutical Sciences
  • 2022-10-31
  • Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS₂
  • Jiajie Pei, Xue Liu, Andrés Granados del Águila, Di Bao, Sheng Liu, Mohamed-Raouf AMARA, Weijie Zhao, Feng Zhang, Congya You, Yongzhe Zhang, Kenji Watanabe, Takashi Taniguchi, Han Zhang, Qihua Xiong
  • Opto-Electronic Advances
  • 2022-10-28
  • Low-loss chip-scale programmable silicon photonic processor
  • Yiwei Xie, Shihan Hong, Hao Yan, Changping Zhang, Long Zhang, Leimeng Zhuang, Daoxin Dai
  • Opto-Electronic Advances
  • 2022-10-28
  • Metasurface-based nanoprinting: principle, design and advances
  • Rao Fu, Kuixian Chen, Zile Li, Shaohua Yu, Guoxing Zheng
  • Opto-Electronic Science
  • 2022-10-28
  • Table-top optical parametric chirped pulse amplifiers: past and present
  • Audrius Dubietis, Aidas Matijošius
  • Opto-Electronic Advances
  • 2022-09-30
  • ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics
  • Bhavani Prasad Yalagala, Abhishek Singh Dahiya, Ravinder Dahiya
  • Opto-Electronic Advances
  • 2022-09-30
  • Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization
  • Yaxin Zhang, Mingbo Pu, Jinjin Jin1, Xinjian Lu, Yinghui Guo, Jixiang Cai, Fei Zhang, Yingli Ha, Qiong He, Mingfeng Xu, Xiong Li, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2022-09-30
  • All-optical logic gate computing for high-speed parallel information processing
  • Shuming Jiao, Junwei Liu, Liwen Zhang, Feihong Yu, Guomeng Zuo, Jingming Zhang, Fang Zhao, Weihao Lin, Liyang Shao
  • Opto-Electronic Science
  • 2022-09-07
  • 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution
  • Weijia Meng, Yilin Hua, Ke Cheng, Baoli Li, Tingting Liu, Qinyu Chen, Haitao Luan, Min Gu, Xinyuan Fang
  • Opto-Electronic Science
  • 2022-09-07
  • Ultra-high spectral purity laser derived from weak external distributed perturbation
  • Laiyang Dang, Ligang Huang, Leilei Shi, Fuhui Li, Guolu Yin, Lei Gao, Tianyi Lan, Yujia Li, Lidan Jiang, Tao Zhu
  • Opto-Electronic Advances
  • 2022-08-31



  • Carnivorous plants inspired shape-morphing slippery surfaces                                Spatiotemporal Fourier transform with femtosecond pulses for on-chip devices
    About
    |
    Contact
    |
    Copyright © PubCard