Year
Month
(Peer-Reviewed) Exceptional-point-enhanced sensing in an all-fiber bending sensor
Zheng Li 李铮 ¹, Jingxu Chen 陈敬旭 ¹, Lingzhi Li 李凌志 ¹, Jiejun Zhang 张杰君 ¹, Jianping Yao 姚建平 ¹ ²
¹ Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
中国 广州 暨南大学光子技术研究院 广东省光纤传感与通信技术重点实验室
² Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
Opto-Electronic Advances, 2023-12-12
Abstract

An exceptional-point (EP) enhanced fiber-optic bending sensor is reported. The sensor is implemented based on parity-time (PT)-symmetry using two coupled Fabry-Perot (FP) resonators consisting of three cascaded fiber Bragg gratings (FBGs) inscribed in an erbium-ytterbium co-doped fiber (EYDF). The EP is achieved by controlling the pumping power to manipulate the gain and loss of the gain and loss FP resonators.

Once a bending force is applied to the gain FP resonator to make the operation of the system away from its EP, frequency splitting occurs, and the frequency spacing is a nonlinear function of the bending curvature, with an increased slope near the EP. Thus, by measuring the frequency spacing, the bending information is measured with increased sensitivity.

To achieve high-speed and high-resolution interrogation, the optical spectral response of the sensor is converted to the microwave domain by implementing a dual-passband microwave-photonic filter (MPF), with the spacing between the two passbands equal to that of the frequency splitting.

The proposed sensor is evaluated experimentally. A curvature sensing range from 0.28 to 2.74 m⁻¹ is achieved with an accuracy of 7.56×10⁻⁴ m⁻¹ and a sensitivity of 1.32 GHz/m⁻¹, which is more than 4 times higher than those reported previously.
Exceptional-point-enhanced sensing in an all-fiber bending sensor_1
Exceptional-point-enhanced sensing in an all-fiber bending sensor_2
Exceptional-point-enhanced sensing in an all-fiber bending sensor_3
Exceptional-point-enhanced sensing in an all-fiber bending sensor_4
  • Photo-driven fin field-effect transistors
  • Jintao Fu, Chongqian Leng, Rui Ma, Changbin Nie, Feiying Sun, Genglin Li, Xingzhan Wei
  • Opto-Electronic Science
  • 2024-05-28
  • Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
  • Tong Nan, Huan Zhao, Jinying Guo, Xinke Wang, Hao Tian, Yan Zhang
  • Opto-Electronic Science
  • 2024-05-28
  • Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
  • Ji Tong Wang, Pavel Tonkaev, Kirill Koshelev, Fangxing Lai, Sergey Kruk, Qinghai Song, Yuri Kivshar, Nicolae C. Panoiu
  • Opto-Electronic Advances
  • 2024-05-15
  • Liquid crystal-integrated metasurfaces for an active photonic platform
  • Dohyun Kang, Hyeonsu Heo, Younghwan Yang, Junhwa Seong, Hongyoon Kim, Joohoon Kim, Junsuk Rho
  • Opto-Electronic Advances
  • 2024-04-25
  • Fast source mask co-optimization method for high-NA EUV lithography
  • Ziqi Li, Lisong Dong, Xu Ma, Yayi Wei
  • Opto-Electronic Advances
  • 2024-04-25
  • Polariton lasing in Mie-resonant perovskite nanocavity
  • Mikhail A. Masharin, Daria Khmelevskaia, Valeriy I. Kondratiev, Daria I. Markina, Anton D. Utyushev, Dmitriy M. Dolgintsev, Alexey D. Dmitriev, Vanik A. Shahnazaryan, Anatoly P. Pushkarev, Furkan Isik, Ivan V. Iorsh, Ivan A. Shelykh, Hilmi V. Demir, Anton K. Samusev, Sergey V. Makarov
  • Opto-Electronic Advances
  • 2024-04-25
  • High-Q resonant Terahertz metasurfaces
  • Manukumara Manjappa, Yuri Kivshar
  • Opto-Electronic Advances
  • 2024-04-25
  • Efficient stochastic parallel gradient descent training for on-chip optical processor
  • Yuanjian Wan, Xudong Liu, Guangze Wu, Min Yang, Guofeng Yan, Yu Zhang, Jian Wang
  • Opto-Electronic Advances
  • 2024-04-25
  • High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
  • Haizhou Huang, Huaixi Chen, Huagang Liu, Zhi Zhang, Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang, Wenxiong Lin
  • Opto-Electronic Science
  • 2024-04-24
  • Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
  • Jiao Jiao Liu, Xinxin Yang, Qiulei Xu, Ruiguang Chang, Zhenghui Wu, Huaibin Shen
  • Opto-Electronic Science
  • 2024-04-24
  • Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
  • Ruozhong Han, Yuchan Zhang, Qilin Jiang, Long Chen, Kaiqiang Cao, Shian Zhang, Donghai Feng, Zhenrong Sun, Tianqing Jia
  • Opto-Electronic Science
  • 2024-03-22
  • Optical scanning endoscope via a single multimode optical fiber
  • Guangxing Wu, Runze Zhu, Yanqing Lu, Minghui Hong, Fei Xu
  • Opto-Electronic Science
  • 2024-03-22



  • Deep learning enabled single-shot absolute phase recovery in high-speed composite fringe pattern profilometry of separated objects                                All-optical object identification and three-dimensional reconstruction based on optical computing metasurface
    About
    |
    Contact
    |
    Copyright © PubCard