Year
Month
(Peer-Reviewed) Exceptional-point-enhanced sensing in an all-fiber bending sensor
Zheng Li 李铮 ¹, Jingxu Chen 陈敬旭 ¹, Lingzhi Li 李凌志 ¹, Jiejun Zhang 张杰君 ¹, Jianping Yao 姚建平 ¹ ²
¹ Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
中国 广州 暨南大学光子技术研究院 广东省光纤传感与通信技术重点实验室
² Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
Opto-Electronic Advances, 2023-12-12
Abstract

An exceptional-point (EP) enhanced fiber-optic bending sensor is reported. The sensor is implemented based on parity-time (PT)-symmetry using two coupled Fabry-Perot (FP) resonators consisting of three cascaded fiber Bragg gratings (FBGs) inscribed in an erbium-ytterbium co-doped fiber (EYDF). The EP is achieved by controlling the pumping power to manipulate the gain and loss of the gain and loss FP resonators.

Once a bending force is applied to the gain FP resonator to make the operation of the system away from its EP, frequency splitting occurs, and the frequency spacing is a nonlinear function of the bending curvature, with an increased slope near the EP. Thus, by measuring the frequency spacing, the bending information is measured with increased sensitivity.

To achieve high-speed and high-resolution interrogation, the optical spectral response of the sensor is converted to the microwave domain by implementing a dual-passband microwave-photonic filter (MPF), with the spacing between the two passbands equal to that of the frequency splitting.

The proposed sensor is evaluated experimentally. A curvature sensing range from 0.28 to 2.74 m⁻¹ is achieved with an accuracy of 7.56×10⁻⁴ m⁻¹ and a sensitivity of 1.32 GHz/m⁻¹, which is more than 4 times higher than those reported previously.
Exceptional-point-enhanced sensing in an all-fiber bending sensor_1
Exceptional-point-enhanced sensing in an all-fiber bending sensor_2
Exceptional-point-enhanced sensing in an all-fiber bending sensor_3
Exceptional-point-enhanced sensing in an all-fiber bending sensor_4
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17
  • Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
  • Saeed Bohlooli Darian, Jeongmin Oh, Bjorn Paulson, Minju Cho, Globinna Kim, Eunyoung Tak, Inki Kim, Chan-Gi Pack, Jung-Man Namgoong, In-Jeoung Baek, Jun Ki Kim
  • Opto-Electronic Advances
  • 2025-07-17
  • Research progress on generating perfect vortex beams based on metasurfaces
  • Xiujuan Liu, Manna Gu, Ying Tian, Mingfeng Zheng, Bo Fang, Zhi Hong, Chee Leong Tan, Xufeng Jing
  • Opto-Electronic Science
  • 2025-07-09
  • Non-volatile tunable multispectral compatible infrared camouflage based on the infrared radiation characteristics of Rosaceae plants
  • Xin Li, Xinye Liao, Junxiang Zeng, Zao Yi, Xin He, Jiagui Wu, Huan Chen, Zhaojian Zhang, Yang Yu, Zhengfu Zhang, Sha Huang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-07-09
  • Spectro-polarimetric detection enabled by multidimensional metasurface with quasi-bound states in the continuum
  • Haoyang He, Fangxing Lai, Yan Zhang, Xue Zhang, Chenyi Tian, Xin Li, Yongtian Wang, Shumin Xiao, Lingling Huang
  • Opto-Electronic Advances
  • 2025-06-30
  • Emerging low-dimensional perovskite resistive switching memristors: from fundamentals to devices
  • Shuanglong Wang, Hong Lian, Haifeng Ling, Hao Wu, Tianxiao Xiao, Yijia Huang, Peter Müller-Buschbaum
  • Opto-Electronic Advances
  • 2025-06-27
  • CW laser damage of ceramics induced by air filament
  • Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
  • Opto-Electronic Advances
  • 2025-06-27



  • Deep learning enabled single-shot absolute phase recovery in high-speed composite fringe pattern profilometry of separated objects                                All-optical object identification and three-dimensional reconstruction based on optical computing metasurface
    About
    |
    Contact
    |
    Copyright © PubCard