Year
Month
(Peer-Reviewed) Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
Jiangbo Lyu 吕江泊 ¹ ², Tao Zhu 朱涛 ¹ ², Yan Zhou 周延 ¹, Zhenmin Chen 陈震旻 ¹, Yazhi Pi 皮雅稚 ¹, Zhengtong Liu 刘政通 ¹, Xiaochuan Xu 徐小川 ², Ke Xu 徐科 ², Xu Ma 马旭 ³, Lei Wang 王磊 ¹, Zizheng Cao 曹子峥 ¹, Shaohua Yu 余少华 ¹
¹ Peng Cheng Laboratory, Shenzhen 518055, China
中国 深圳 鹏城实验室
² Department of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
中国 深圳 哈尔滨工业大学(深圳)电子与信息工程学院
³ Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院 光电成像技术与系统教育部重点实验室
Opto-Electronic Science, 2024-01-09
Abstract

Inverse design focuses on identifying photonic structures to optimize the performance of photonic devices. Conventional scalar-based inverse design approaches are insufficient to design photonic devices of anisotropic materials such as lithium niobate (LN). To the best of our knowledge, this work proposes for the first time the inverse design method for anisotropic materials to optimize the structure of anisotropic-material based photonics devices.

Specifically, the orientation dependent properties of anisotropic materials are included in the adjoint method, which provides a more precise prediction of light propagation within such materials. The proposed method is used to design ultra-compact wavelength division demultiplexers in the X-cut thin-film lithium niobate (TFLN) platform.

By benchmarking the device performances of our method with those of classical scalar-based inverse design, we demonstrate that this method properly addresses the critical issue of material anisotropy in the X-cut TFLN platform.

This proposed method fills the gap of inverse design of anisotropic materials based photonic devices, which finds prominent applications in TFLN platforms and other anisotropic-material based photonic integration platforms.
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer_1
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer_2
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer_3
Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer_4
  • Multi-wavelength nanowire micro-LEDs for future high speed optical communication
  • Ayush Pandey, Zetian Mi
  • Opto-Electronic Advances
  • 2024-03-20
  • Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
  • Dehai Liang, Saif M. H. Qaid, Xin Yang, Shuangyi Zhao, Binbin Luo, Wensi Cai, Qingkai Qian, Zhigang Zang
  • Opto-Electronic Advances
  • 2024-03-20
  • Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
  • Yuqiang Ding, Zhenyi Luo, Garimagai Borjigin, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2024-03-20
  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • Yinan Zhang, Yinggang Chen, Tong Wang, Qian Zhu, Min Gu
  • Opto-Electronic Advances
  • 2024-03-12
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Towards the performance limit of catenary meta-optics via field-driven optimization
  • Siran Chen, Yingli Ha, Fei Zhang, Mingbo Pu, Hanlin Bao, Mingfeng Xu, Yinghui Guo, Yue Shen, Xiaoliang Ma, Xiong Li, Xiangang Luo
  • Opto-Electronic Advances
  • 2024-01-31
  • Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips
  • Xiaohu Zhang, Qinmiao Chen, Dongliang Tang, Kaifeng Liu, Haimo Zhang, Lintong Shi, Mengyao He, Yongcai Guo, Shumin Xiao
  • Opto-Electronic Advances
  • 2024-01-31



  • Flat soliton microcomb source                                Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
    About
    |
    Contact
    |
    Copyright © PubCard