Year
Month
(Peer-Reviewed) Thin-interbedded reservoirs prediction based on seismic sedimentology
Changkuan NI 倪长宽 ¹ ², Mingjun SU 苏明军 ¹, Cheng YUAN 袁成 ¹, Huaqing LIU 刘化清 ¹, Xiangli CUI 崔向丽 ¹
¹ Research Institute of Petroleum Exploration and Development-Northwest (NWGI), PetroChina, Lanzhou 730020, China
中国 兰州 中国石油天然气股份有限公司 勘探开发研究院西北分院
² University of Electronic Science and Technology, Chengdu 611731, China
中国 成都 电子科技大学
Abstract

Interference of thin-interbedded layers in seismic reflections has great negative impact on thin-interbedded reservoirs prediction. To deal with this, two novel methods are proposed that can predict the thin-interbedded reservoirs distribution through strata slices by suppressing the interference of adjacent layer with the help of seismic sedimentology.

The plane distribution of single sand bodies in thin-interbedded reservoirs can be clarified. (1) The minimum interference frequency slicing method, uses the amplitude-frequency attribute estimated by wavelet transform to find a constant seismic frequency with the minimum influence on the stratal slice of target layer, and then an optimal slice corresponding the constant frequency mentioned above can be obtained. (2) The superimposed slicing method can calculate multiple interference coefficients of reservoir and adjacent layers of target geological body, and obtain superimposed slice by weighted stacking the multiple stratal slices of neighboring layers and target layer.

The two proposed methods were used to predict the distribution of the target oil layers of 6 m thick in three sets of thin-interbedded reservoirs of Triassic Kelamayi Formation in the Fengnan area of Junggar Basin, Northwestern China. A comparison with drilling data and conventional stratal slices shows that the two methods can predict the distribution of single sand bodies in thin-interbedded reservoirs more accurately.
Thin-interbedded reservoirs prediction based on seismic sedimentology_1
Thin-interbedded reservoirs prediction based on seismic sedimentology_2
Thin-interbedded reservoirs prediction based on seismic sedimentology_3
Thin-interbedded reservoirs prediction based on seismic sedimentology_4
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16
  • Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
  • Jiangbo Lyu, Tao Zhu, Yan Zhou, Zhenmin Chen, Yazhi Pi, Zhengtong Liu, Xiaochuan Xu, Ke Xu, Xu Ma, Lei Wang, Zizheng Cao, Shaohua Yu
  • Opto-Electronic Science
  • 2024-01-09
  • Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
  • Yuting Xiao, Lianwei Chen, Mingbo Pu, Mingfeng Xu, Qi Zhang, Yinghui Guo, Tianqu Chen, Xiangang Luo
  • Opto-Electronic Science
  • 2024-01-05
  • Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
  • Chunyan Chu, Zhentao Liu, Mingliang Chen, Xuehui Shao, Guohai Situ, Yuejin Zhao, Shensheng Han
  • Opto-Electronic Advances
  • 2023-3-10
  • Flat soliton microcomb source
  • Xinyu Wang, Xuke Qiu, Mulong Liu, Feng Liu, Mengmeng Li, Linpei Xue, Bohan Chen, Mingran Zhang, Peng Xie
  • Opto-Electronic Science
  • 2023-12-29



  • Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth                                A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion
    About
    |
    Contact
    |
    Copyright © PubCard