(Peer-Reviewed) Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth
Siqi Yan 严思琦 ¹ ², Yan Zuo 左炎 ¹ ², Sanshui Xiao 肖三水 ¹, Leif Katsuo Oxenløwe ¹, Yunhong Ding 丁运鸿 ¹
¹ DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
² School of Optical and Electrical Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家实验室
Opto-Electronic Advances, 2022-07-29

Silicon photonics integrated with graphene provides a promising solution to realize integrated photodetectors operating at the communication window thanks to graphene’s ultrafast response and compatibility with CMOS fabrication process. However, current hybrid graphene/silicon photodetectors suffer from low responsivity due to the weak light-graphene interaction. Plasmonic structures have been explored to enhance the responsivity, but the intrinsic metallic Ohmic absorption of the plasmonic mode limits its performance.

In this work, by combining the silicon slot and the plasmonic slot waveguide, we demonstrate a novel double slot structure supporting high-performance photodetection, taking advantages of both silicon photonics and plasmonics. With the optimized structural parameters, the double slot structure significantly promotes graphene absorption while maintaining low metallic absorption within the double slot waveguide.

Based on the double slot structure, the demonstrated photodetector holds a high responsivity of 603.92 mA/W and a large bandwidth of 78 GHz. The high-performance photodetector provides a competitive solution for the silicon photodetector. Moreover, the double slot structure could be beneficial to a broader range of hybrid two-dimensional material/silicon devices to achieve stronger light-matter interaction with lower metallic absorption.
Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth_1
Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth_2
Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth_3
Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth_4
  • Influence of N-doping on dielectric properties of carbon-coated copper nanocomposites in the microwave and terahertz ranges
  • Feirong Huang, Shuting Fan, Yuqi Tian, Xinghao Qu, Xiyang Li, Maofan Qin, Javid Muhammad, Xuefeng Zhang, Zhidong Zhang, Xinglong Dong
  • Journal of Materiomics
  • 2022-11-06
  • Towards integrated mode-division demultiplexing spectrometer by deep learning
  • Ze-huan Zheng, Sheng-ke Zhu, Ying Chen, Huanyang Chen, Jin-hui Chen
  • Opto-Electronic Science
  • 2022-11-01
  • Discovery of novel aspartate derivatives as highly potent and selective FXIa inhibitors
  • Ling Zhang, Wei Chen, Ningning Yao, Shuzeng Hou, Zhiwei Meng, Yi Kong, Chenzhong Liao, Zhouling Xie
  • Journal of Chinese Pharmaceutical Sciences
  • 2022-10-31
  • Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS₂
  • Jiajie Pei, Xue Liu, Andrés Granados del Águila, Di Bao, Sheng Liu, Mohamed-Raouf AMARA, Weijie Zhao, Feng Zhang, Congya You, Yongzhe Zhang, Kenji Watanabe, Takashi Taniguchi, Han Zhang, Qihua Xiong
  • Opto-Electronic Advances
  • 2022-10-28
  • Low-loss chip-scale programmable silicon photonic processor
  • Yiwei Xie, Shihan Hong, Hao Yan, Changping Zhang, Long Zhang, Leimeng Zhuang, Daoxin Dai
  • Opto-Electronic Advances
  • 2022-10-28
  • Large-scale and high-quality III-nitride membranes through microcavity-assisted crack propagation by engineering tensile-stressed Ni layers
  • Jung-Hong Min, Kwangjae Lee, Tae-Hoon Chung, Jung-Wook Min, Kuang-Hui L1, Chun Hong Kang, Hoe-Min Kwak, Tae-Hyeon Kim, Youyou Yuan, Kyoung-Kook Kim, Dong-Seon Lee, Tien Khee Ng, Boon S. Ooi
  • Opto-Electronic Science
  • 2022-10-28
  • Metasurface-based nanoprinting: principle, design and advances
  • Rao Fu, Kuixian Chen, Zile Li, Shaohua Yu, Guoxing Zheng
  • Opto-Electronic Science
  • 2022-10-28
  • Table-top optical parametric chirped pulse amplifiers: past and present
  • Audrius Dubietis, Aidas Matijošius
  • Opto-Electronic Advances
  • 2022-09-30
  • ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics
  • Bhavani Prasad Yalagala, Abhishek Singh Dahiya, Ravinder Dahiya
  • Opto-Electronic Advances
  • 2022-09-30
  • Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization
  • Yaxin Zhang, Mingbo Pu, Jinjin Jin1, Xinjian Lu, Yinghui Guo, Jixiang Cai, Fei Zhang, Yingli Ha, Qiong He, Mingfeng Xu, Xiong Li, Xiaoliang Ma, Xiangang Luo
  • Opto-Electronic Advances
  • 2022-09-30
  • All-optical logic gate computing for high-speed parallel information processing
  • Shuming Jiao, Junwei Liu, Liwen Zhang, Feihong Yu, Guomeng Zuo, Jingming Zhang, Fang Zhao, Weihao Lin, Liyang Shao
  • Opto-Electronic Science
  • 2022-09-07
  • 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution
  • Weijia Meng, Yilin Hua, Ke Cheng, Baoli Li, Tingting Liu, Qinyu Chen, Haitao Luan, Min Gu, Xinyuan Fang
  • Opto-Electronic Science
  • 2022-09-07

  • Natural history and cycle threshold values analysis of COVID-19 in Xiamen City, China                                Thin-interbedded reservoirs prediction based on seismic sedimentology
    Copyright © PubCard