Year
Month
(Preprint) Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling
Lingzhi Wang ¹, Jing Li 李菁 ², Xingshan Zeng 曾幸山 ³, Kam-Fai Wong 黄锦辉 ¹
¹ The Chinese University of Hong Kong, Hong Kong, China
中国 香港 香港中文大学
² The Hong Kong Polytechnic University, Hong Kong, China
中国 香港 香港理工大学
³ Huawei Noah’s Ark Lab, Hong Kong, China
中国 香港 华为诺亚方舟实验室
arXiv, 2021-08-18
Abstract

With the increasing popularity of social media, online interpersonal communication now plays an essential role in people's everyday information exchange. Whether and how a newcomer can better engage in the community has attracted great interest due to its application in many scenarios. Although some prior works that explore early socialization have obtained salient achievements, they are focusing on sociological surveys based on the small group.

To help individuals get through the early socialization period and engage well in online conversations, we study a novel task to foresee whether a newcomer's message will be responded to by other participants in a multi-party conversation (henceforth \textbf{Successful New-entry Prediction}). The task would be an important part of the research in online assistants and social media. To further investigate the key factors indicating such engagement success, we employ an unsupervised neural network, Variational Auto-Encoder (\textbf{VAE}), to examine the topic content and discourse behavior from newcomer's chatting history and conversation's ongoing context. Furthermore, two large-scale datasets, from Reddit and Twitter, are collected to support further research on new-entries.

Extensive experiments on both Twitter and Reddit datasets show that our model significantly outperforms all the baselines and popular neural models. Additional explainable and visual analyses on new-entry behavior shed light on how to better join in others' discussions.
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_1
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_2
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_3
Successful New-entry Prediction for Multi-Party Online Conversations via Latent Topics and Discourse Modeling_4
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03



  • Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks                                DRVI: Dual Refinement for Video Interpolation
    About
    |
    Contact
    |
    Copyright © PubCard